一、最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
思路
1.dp[i]:表示的是以nums[i]为结尾的最长递增子序列的长度
2.递推公式:dp[i] = max(dp[j] + 1,dp[i]) j遍历0到i -1
3.初始化:dp[i] = 1 每一个i,对应的dp[i]起始大小至少都是1
4.遍历顺序:从前往后遍历
最终结果:遍历以每一个nums[i]为结尾的最长递增子序列的长度,求得最大值
实现代码
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(),1);
int result = 0;
for(int i = 1; i < nums.size(); i++) {
for(int j = 0; j < i; j++) {
if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if(dp[i] > result) result = dp[i];
}
return result;
}
};
二、最长连续递增序列
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
思路
1.dp[i]:表示以i为结尾的最长递增子序列的长度
2.递推公式:if(nums[[i] > nums[i - 1]) dp[i] = dp[i - 1] +1 (连续)
3.初始化:dp[i] = 1
4.遍历顺序:从前往后遍历
实现代码
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
if(nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for(int i = 1; i < nums.size(); i++) {
if(nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;
if(dp[i] > result) result = dp[i];
}
return result;
}
};
三、最长重复子数组
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
子数组就是连续的子数列
思路
1.dp[i][j] :以i-1结尾的nums1和j-1结尾的nums2,最长重复子数组的长度为dp[i][j]
如果定义 dp[i][j]为以下标i为结尾的A,和以下标j 为结尾的B,那么 第一行和第一列要进行初始化,如果nums1[i] 与nums2[0] 相同的话,对应的 dp[i][0]就要初始为1, 因为此时最长重复子数组为1。 nums2[j] 与nums1[0]相同的话,同理。
2.递推公式:if(nums[i- 1] == nums[j- 1]) dp[i][j] = dp[i - 1][j- 1] +1
3.初始化:dp[i][0] = 0 dp[0][j] = 0 其他下标数组初始化0
4.遍历顺序:遍历nums1/nums2再遍历nums2/nums1
最终结果:二维数组全部遍历,找到最长重复子数组
实现代码
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));
int result = 0;
for(int i = 1; i <= nums1.size(); i++) {
for(int j = 1; j <= nums2.size(); j++) {
if(nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
if(dp[i][j] > result) result = dp[i][j];
}
}
return result;
}
};