一、最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
元素之间可以不连续
思路
1.dp[i][j] :以[0,i - 1]的nums1和[0,j - 1]的nums2的最长公共子序列的长度
2.递推公式:
if(nums[i - 1] = nums[j - 1]) dp[i][j] = dp[i - 1][j - 1] +1
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
3.初始化:dp[i][0] = 0 dp[0][j] = 0 其他位置初始化为0
4.遍历顺序:从上到下,从左到右
实现代码
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.size() + 1,vector<int>(text2.size() + 1, 0));
for(int i = 1; i <= text1.size(); i++) {
for(int j = 1; j <= text2.size(); j++) {
if(text1[i - 1] == text2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[text1.size()][text2.size()];
}
};
二、不相交的线
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
以这种方法绘制线条,并返回我们可以绘制的最大连线数。
思路
相同元素:找相同子序列
最大连接数:求最长的公共子序列
故此题本质就是求两个数组的最长公共子序列
实现代码
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
vector<vector<int>> dp(nums1.size() + 1, vector<int> (nums2.size() + 1, 0));
for(int i = 1; i <= nums1.size(); i++) {
for(int j = 1; j <= nums2.size(); j++) {
if(nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[nums1.size()][nums2.size()];
}
};
三、最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
思路
1.dp[i] :以nums[i]为结尾的最大连续子序列的和
2.递推公式:dp[i] = max(dp[i - 1] + nums[i],nums[i])(延续前面的或者从当前开始)
3.初始化:dp[0] = nums[0]
4.遍历顺序:从前往后
最后的结果:遍历一遍所有dp数组,找到最大的和
实现代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size() == 0) return 0;
vector<int> dp(nums.size());
dp[0] = nums[0];
int result = dp[0];
for(int i = 1; i < nums.size(); i++) {
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
if(dp[i] > result) result = dp[i];
}
return result;
}
};