一、理论知识
1.什么时候使用单调栈?
通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈。单调栈记录遍历过的元素
2.单调栈的本质是什么
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素高的元素,优点是整个数组只需要遍历一次。
3.在使用单调栈的时候首先要明确如下几点
1.单调栈里存放的元素是什么?
单调栈里只需要存放元素的下标i就可以了,如果需要使用对应的元素,直接T[i]就可以获取。
2.单调栈里元素是递增呢? 还是递减呢? (栈口到栈底的顺序)
如果求一个元素右边第一个更大元素,单调栈就是递增的,如果求一个元素右边第一个更小元素,单调栈就是递减的。
3.使用单调栈主要有三个判断条件:
当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况
当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况
当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况
二、每日温度
请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。
例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。
思路
单调栈记录遍历过的元素,然后当前遍历元素与栈口元素比较:
1.如果当前遍历的元素大于栈口元素,记录结果并弹出栈口元素,继续进行比较,如果大于栈口元素就记录结果,直到当前遍历元素小于栈顶元素,将当前遍历元素加入栈中;
2.如果当前遍历的元素小于或等于栈口元素,直接加入栈中;
这样就可以保证我们的栈是单调递增栈,每次与栈口元素进行比较,找到的一定是右面第一个比它大的元素
实现代码
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& T) {
stack<int> st;
vector<int> result(T.size(), 0);
st.push(0);
for(int i = 1; i < T.size(); i++) {
if(T[i] < T[st.top()]) {
st.push(i);
} else if(T[i] == T[st.top()]) {
st.push(i);
} else {
while(!st.empty() && T[i] > T[st.top()]) {
result[st.top()] = i - st.top();
st.pop();
}
st.push(i);
}
}
return result;
}
};
三、下一个更大元素 I
给你两个 没有重复元素 的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。请你找出 nums1 中每个元素在 nums2 中的下一个比其大的值。nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出 -1 。
思路
1.result数组大小是nums1数组来决定的
2.单调栈遍历nums2,在遍历nums2的过程中,我们要判断nums2[i]是否在nums1中出现过,由于没有重复元素,所以可以用map来做映射。(根据数值快速找到下标,还可以判断nums2[i]是否在nums1中出现过)
实现代码
class Solution {
public:
vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
stack<int> st;
vector<int> result(nums1.size(), -1);
if(nums1.size() == 0) return result;
unordered_map<int, int> umap; // key:下标元素 value:下标
for(int i = 0; i < nums1.size(); i++) {
umap[nums1[i]] = i;
}
st.push(0);
for(int i = 1; i < nums2.size(); i++) {
if(nums2[i] < nums2[st.top()]) {
st.push(i);
} else if(nums2[i] == nums2[st.top()]) {
st.push(i);
} else {
while(!st.empty() && nums2[i] > nums2[st.top()]) {
if(umap.count(nums2[st.top()]) > 0) { //看map中是否存在这个元素
int index = umap[nums2[st.top()]]; //根据map找到栈顶元素在nums1中的下标
result[index] = nums2[i];
}
st.pop();
}
st.push(i);
}
}
return result;
}
};