算法学习|单调栈 LeetCode 84.柱状图中最大的矩形

文章介绍了如何使用单调栈解决求解柱状图中能形成的最大矩形面积的问题。通过分析三种不同情况(当前元素大于、等于或小于栈顶元素),确保栈的单调递减性,从而找到矩形的宽和高。在处理特殊情况如数组全升序或全降序时,需要在首尾添加0来确保所有元素都能参与计算。提供的实现代码展示了这一算法的应用。
摘要由CSDN通过智能技术生成

一、柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。求在该柱状图中,能够勾勒出来的矩形的最大面积。

思路

寻找左边第一个以及右边第一个比栈口元素小的元素,就可以确定矩形的宽,栈口元素的高就是矩形的高。要保证栈顶元素找到左右两边第一个小于栈顶元素的柱子,单调栈必须递减。分为以下三种情况:
情况一:当前遍历的元素heights[i]大于栈顶元素heights[st.top()]的情况
情况二:当前遍历的元素heights[i]等于栈顶元素heights[st.top()]的情况
情况三:当前遍历的元素heights[i]小于栈顶元素heights[st.top()]的情况

为什么需要数组尾部加0,头部加0?
如果数组本身就是升序的,例如[2,4,6,8],那么入栈之后都是单调递减,一直都没有走 情况三 计算结果的那一步,所以最后输出的就是0了。那么结尾加一个0,就会让栈里的所有元素,走到情况三的逻辑。
如果数组本身是降序的,例如 [8,6,4,2],在 8 入栈后,6 开始与8 进行比较,此时我们得到 mid(8),right(6),但是得不到 left,所以需要头部加0

实现代码

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int result = 0;
        stack<int> st;
        heights.insert(heights.begin(), 0);
        heights.push_back(0);
        st.push(0);
        for(int i = 1; i < heights.size(); i++) {
            if(heights[i] > heights[st.top()]) {
                st.push(i);
            } else if (heights[i] == heights[st.top()]) {
                st.pop();
                st.push(i);
            } else {
                while(!st.empty() && heights[i] <  heights[st.top()]) {
                    int mid= st.top();
                    st.pop();
                    if(!st.empty()) {
                        int left = st.top();
                        int right = i;
                        int w = right - left - 1;
                        int h = heights[mid];
                        result = max(result, w * h);
                    }
                }
                st.push(i);
            }
        }
    return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值