deeplearning

本文介绍了深度学习的基础概念,包括Softmax函数及其在分类中的应用,解释了One-Hot编码的原理和作用,以及在机器学习中解决分类问题的Cross Entropy损失函数。同时,还提及了随机梯度下降(SGD)和ReLU激活函数在神经网络中的重要性。
摘要由CSDN通过智能技术生成

Softmax

Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 k个可能值进行了累加。注意在Softmax回归中将 x分类为类别 j的概率为:

"""Softmax."""
scores = [3.0, 1.0, 0.2]
import numpy as np
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    return np.exp(x) / np.sum(np.exp(x), axis=0) 
    #Compute and return softmax(x)   axis=0 即对列求和

print(softmax(scores))
# Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
#Take a sequence of arrays and stack them vertically to make a single array.
plt.plot(x, softmax(scores).T, linewidth=2)

plt.show()

[ 0.8360188 0.11314284 0.05083836]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值