Pandas中中括号和双中括号

本文详细介绍了在使用Pandas库进行数据分析时,如何利用GroupBy方法对数据进行分组聚合操作。特别关注了在使用单中括号与双中括号对指定列进行聚合时的不同输出形式,并对比了它们在单列与多列聚合时的表现。
摘要由CSDN通过智能技术生成
当我们使用pandas中的groupby进行分组聚合时,若对需要聚合的单列使用双中括号,则输出时会带有列标签
df.groupby(['key1','key2'])[['data2']].mean()
Out[27]: 
              data2
key1 key2          
a    one   0.072958
     two  -0.962946
b    one   0.946299
     two   1.576233
若对需要聚合的单列使用单中括号,则输出时不会带有列标签,末尾会单独输出一行属性列
df.groupby(['key1','key2'])['data2'].mean()
Out[29]: 
key1  key2
a     one     0.072958
      two    -0.962946
b     one     0.946299
      two     1.576233
Name: data2, dtype: float64
若需要将多列进行聚合时,单中括号和双中括号没有区别
df.groupby(['key1','key2'])['data1','data2'].mean()
Out[31]: 
              data1     data2
key1 key2                    
a    one   0.018737  0.072958
     two  -1.319022 -0.962946
b    one   0.917741  0.946299
     two  -1.288477  1.576233

df.groupby(['key1','key2'])[['data1','data2']].mean()
Out[30]: 
              data1     data2
key1 key2                    
a    one   0.018737  0.072958
     two  -1.319022 -0.962946
b    one   0.917741  0.946299
     two  -1.288477  1.576233


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值