shuju<-data.frame(x=c(825,215,1070,550,480,920,1350,325,670,1215),y=c(3.5,1,4,2,1,3,4.5,1.5,3,5))
shuju #建立数据
attach(shuju)
plot(x,y,main="签发的新保单数目对每周加班时间的影响") #(1)画散点图(2)看x与y是否存在线性关系
shuju.reg<-lm(y~x)
summary(shuju.reg) #(3)最小二乘估计(4)求回归标准误差(6)x与y的决定系数(8)回归系数的显著性检验
abline(shuju.reg,col=2,lty=2) #拟合直线
confint(shuju.reg) #(5)回归系数的区间估计
anova(shuju.reg) #(7)对回归方程作方差分析
cor.test(x,y) #(9)相关系数的显著性检验
plot(x,shuju.reg$residuals) #(10)画残差图
shuju.pred1<-predict(shuju.reg,newdata=data.frame(x=1000)) #(11)预测y0
shuju.pred1
shuju.pred2<-predict(shuju.reg,newdata=data.frame(x=1000),interval='prediction') #(12)y0的预测区间
shuju.pred2
shuju.conf3<-predict(shuju.reg,newdata=data.frame(x=1000),interval='confidence') #(13)Ey0的置信区间
shuju.conf3
detach(shuju)
shuju #建立数据
attach(shuju)
plot(x,y,main="签发的新保单数目对每周加班时间的影响") #(1)画散点图(2)看x与y是否存在线性关系
shuju.reg<-lm(y~x)
summary(shuju.reg) #(3)最小二乘估计(4)求回归标准误差(6)x与y的决定系数(8)回归系数的显著性检验
abline(shuju.reg,col=2,lty=2) #拟合直线
confint(shuju.reg) #(5)回归系数的区间估计
anova(shuju.reg) #(7)对回归方程作方差分析
cor.test(x,y) #(9)相关系数的显著性检验
plot(x,shuju.reg$residuals) #(10)画残差图
shuju.pred1<-predict(shuju.reg,newdata=data.frame(x=1000)) #(11)预测y0
shuju.pred1
shuju.pred2<-predict(shuju.reg,newdata=data.frame(x=1000),interval='prediction') #(12)y0的预测区间
shuju.pred2
shuju.conf3<-predict(shuju.reg,newdata=data.frame(x=1000),interval='confidence') #(13)Ey0的置信区间
shuju.conf3
detach(shuju)