Numpy的基本使用

1.基本的数学运算与符号

1.1 基本的数学运算与符号

import numpy as np
np.pi  #圆周率

3.141592653589793

np.e  # 自然底数

2.718281828459045

+-*/**
1e-10  # 1 x 10^(-10)

1.2 基本函数

import matplotlib.pyplot as plt
X = np.linspace(0,2 * np.pi,50)
Y = np.sin(X)
plt.plot(X,Y)
plt.show()
其他常用函数:
# 指数函数
x_exp = np.linspace(-10,10,100)
y_exp = 2 ** x_exp
# 对数函数
x_log = np.linspace(0,10,50) 
y_log = np.log(x_log)
# 幂函数
x_pow = np.linspace(0,10,50)
y_pow = np.linspace(0,10,50)

1.3 切片与统计

data1 = np.array([1,2,3])
data2 = np.array([4,5,6])
data1+data2  # array([5,7,9])
data1*data2  # array([20,35,54])
data1.dot(data2)  # 109

求余弦角度
如A同学学习3小时,打游戏1小时;B同学学习1小时,打游戏3小时.求A和B的相似性
A = np.array([3,1])
B = np.array([1,3])

cos_alpha = A.dot(B) / (np.linalg.norm(A) * np.linalg.norm(B))
cos_alpha  # 0.4999999999999999
np.arccos(cos_alpha)  # 得出alpha弧度 1.0471975511965979

#np.rad2deg  弧度转角度
#np.deg2rad    角度转弧度

np.rad2deg(0.9272952180016124)
datas = np.array([[90,92,80],[92,88,90]])
datas.sum() /datas.sum(axis=0或1)
datas.mean()
datas.std()
datas.madian()

1.4 导数与定积分

导数

x_sin = np.linspace(0,4 * np.pi,400)
y_sin = np.sin(x_sin)

y_cos = np.diff(y_sin)

plt.plot(x_sin[1:],y_cos)
plt.show()

定积分

x_sin_int = np.linspace(0,np.pi,20)
y_sin_int = np.sin(x_sin_int)

delta_x = x_sin_int[1]-x_sin_int[0] # 计算积分间隔的宽度
y_sin_int*delta_x # 求出每个小长方形的面积
# array([0.00000000e+00, 9.86960460e-16, 1.97392092e-15, ...,
#       1.97392093e-15, 9.86960474e-16, 3.84734143e-24])

(y_sin_int*delta_x).sum()

鸡兔同笼

a = np.array([[1,1],[2,4]])
b = np.array([35, 94])

np.linalg.inv(a).dot(b)
# array([23., 12.])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值