HDU3336 Count the string(KMP+DP)

题目描述

It is well known that AekdyCoin is good at string problems as well as number theory problems. When given a string s, we can write down all the non-empty prefixes of this string. For example:
s: “abab”
The prefixes are: “a”, “ab”, “aba”, “abab”
For each prefix, we can count the times it matches in s. So we can see that prefix “a” matches twice, “ab” matches twice too, “aba” matches once, and “abab” matches once. Now you are asked to calculate the sum of the match times for all the prefixes. For “abab”, it is 2 + 2 + 1 + 1 = 6.
The answer may be very large, so output the answer mod 10007.

Input

The first line is a single integer T, indicating the number of test cases.
For each case, the first line is an integer n (1 <= n <= 200000), which is the length of string s. A line follows giving the string s. The characters in the strings are all lower-case letters.

Output

For each case, output only one number: the sum of the match times for all the prefixes of s mod 10007.

Sample Input
1
4
abab
Sample Output
6

题目大意

给出一个字符串s,枚举所有的前缀,输出所有前缀出现的次数。

题目分析

题目要求的是所有的前缀在字符串中出现的次数。如果仅仅是每次求一遍KMP,那么复杂度是O(n2),肯定是要超时的,所以我们要想一个更优的解法。
我们想想KMP的next[]数组的原理是什么:next[i]就是i前面前缀重复的上一个位置
因此我们可以发现:当next[i]=j时,说明长度为j的前缀在i位置上有一个重复。
推出了这个结论之后,我们就可以用dp的方式来写了。状态转移方程为:f[i]=f[ne[i]]+1;

代码如下
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <queue>
#include <vector>
#include <set>
#include <algorithm>
#include <iomanip>
#define LL long long
#define ULL unsigned long long
#define PII pair<int,int>
#define x first
#define y second
using namespace std;
const int N=1e6+5,mod=10007;
char s[N];
int ne[N],f[N];
void getNext(int n)
{
    for(int i=2,j=0;i<=n;i++)
    {
        while(j&&s[i]!=s[j+1]) j=ne[j];
        if(s[i]==s[j+1]) j++;
        ne[i]=j;
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d %s",&n,s+1);
        getNext(n);
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            f[i]=f[ne[i]]+1;
            ans=(ans+f[i])%mod;
        }
        printf("%d\n",ans);
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页