机器学习
文章平均质量分 93
好奇的大白
但行好事,莫问前程。
展开
-
【学习笔记】斯坦福大学公开课(机器学习) 之一:线性回归、梯度下降
本文是根据网易公开课中斯坦福机器学习公开课的讲义和视频 ,边学习边记录自己的认识和体会。原创 2017-02-28 14:42:25 · 548 阅读 · 0 评论 -
【论文总结】机器学习需要知道的关键知识
机器学习需要知道的关键知识 原文地址:A Few Useful Things to Know about Machine Learning 机器学习需要知道的关键知识摘要机器学习介绍Introduction学习算法表示评估优化Learning Represention Evaluation Optimization泛化能力最重要It is Generalizatio翻译 2018-02-01 13:57:46 · 1486 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之学习理论.a
偏差与方差的权衡(Bias/variance tradeoff)在学习线性回归时,我们遇到这样的问题,对于一个回归问题,我们是采用比较简单的模型(y=θ0+θ1xy=\theta_0+\theta_1x)还是采用一个比较复杂的多项式模型(y=θ0+θ1x+⋯θ5x5y=\theta_0+\theta_1x+\cdots \theta_5x^5)呢? 我们先看下面一个例子: 作为五阶多项原创 2017-07-24 20:57:49 · 287 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之生成学习算法:朴素贝叶斯
朴素贝叶斯(Naive Bayes)在上一篇介绍的高斯判别分析模型,特征向量XX是连续的实向量。对于离散的特征值来说xx,我们就需要用到另一种模型。 现在我们需要建立一个模型,来识别一封邮件是否是垃圾邮件。邮件分类是众多文本分类问题中的一种。 在开始建立模型之前,我们需要特征值xix_{i}来表示邮件的内容。首先我们要指定一个特征向量,其长度就是字典中单词的个数。如果在邮件中,该单词出现了,那么原创 2017-06-21 10:01:22 · 420 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之支持向量机
在之前的算法中,我们是根据样本来预测出数据的标记(即结果)的概率,那么SVM算法是通过找到数据中的区分边际从而实现数据分类。原创 2017-06-27 11:07:26 · 323 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之生成学习算法:GDA
生成学习算法和高斯判别分析模型简单介绍原创 2017-06-16 10:38:31 · 670 阅读 · 0 评论 -
【学习总结】Deep MNIST for Experts
基于tensorflow的识别手写数字的神经网络原文阅读:https://www.tensorflow.org/get_started/mnist/pros翻译 2017-06-07 10:15:14 · 444 阅读 · 0 评论 -
可视化信息理论(Visual Information Theory) (下)
信息理论中的熵翻译 2017-05-19 09:52:38 · 1501 阅读 · 0 评论 -
可视化信息理论(Visual Information Theory) (中)
信息编码概念理解翻译 2017-05-18 13:41:14 · 1675 阅读 · 0 评论 -
可视化信息理论(Visual Information Theory) (上)
我喜欢用一种新的方式来认识世界,尤其是当一些模糊的认知被形象化为一个具体的概念。信息原理就是一个最好的例子。翻译 2017-05-17 11:20:39 · 1993 阅读 · 1 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之广义线性模型
广义线性模型(GLM)是在指数分布族基础上形成的模型,对于指数分布族中,参数η\eta都可以有其他对应函数来替代,从而得到指数分布族模型的扩展。为引入GLM来解决问题,我们做三个假设: 1.y|x;θ∼ExponentialFamily(η)y|x;\theta∼ExponentialFamily(\eta),即已知x和θx和\theta,yy的分布满足参数为η\eta的指数分布族。 2.假设函原创 2017-04-17 17:48:37 · 435 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习)之指数分布族
可以写出下式形式的分布,都属于指数分布族: p(y;η)=b(y)exp(ηTT(y)−a(η))(1)p(y;\eta)=b(y)exp(\eta^TT(y)-a(\eta))\tag{1} 其中η\eta称为自然参数(natural parameter),T(y)T(y)称为充分统计量(通常情况下T(y)=yT(y)=y),a(η)a(\eta)称为日志配分函数(log partition原创 2017-04-13 09:46:23 · 1967 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之逻辑斯蒂回归(续)
对于逻辑斯蒂回归中,还有另一种最大化l(θ)l(\theta)的算法——牛顿方法。原创 2017-04-11 14:52:51 · 469 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习)题外篇:感知机学习算法
我们考虑把逻辑回归中,模型的输出严格固定为1或者0,即把g(z)g(z)(逻辑函数)改写为阈函数: g(z)={10z≥0z0g(z)=\begin{cases}1& z \geq 0\\0& z<0\\\end{cases} 我们让假设函数hθ(x)=g(θTx)h_\theta(x)=g(\theta^Tx),根据之前的算法,我们把参数更新方法写为: θj:=θj+原创 2017-04-10 16:51:39 · 385 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之逻辑斯蒂回归
如果在遇到一些分类问题,用回归算法来做预测时,我们会发现这些算法得出的模型会不尽人意。甚至在一些很明显的情况下,函数值不会比1大或者比0小,即目标值y∈{0,1}y\in\{0,1\}。 针对这种情况,我们改变假设函数hθ(x)h_{\theta}(x),把假设函数写成如下模型。原创 2017-04-07 14:55:45 · 500 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之概率解释
Probabilistic Interpretation当遇到一个回归问题时,为什么会用线性回归,尤其是使用最小二乘法损失函数J是比较可靠的?原创 2017-03-31 15:14:51 · 715 阅读 · 0 评论 -
【学习笔记】斯坦福大学公开课(机器学习) 之二:正规方程
梯度下降法是最小化损失函数的方法之一,它通过向梯度下降的方向不停的迭代,从而找到使损失函数最小或者趋于最小的值。而正规方程求解参数,使损失函数最小的方法,不会去依赖不停的迭代,而是直接通过计算来求得使损失函数最小的参数值。 在介绍方程之前,先引入导数矩阵的概念:导数矩阵有一个函数f:它是m*n的矩阵到一个实数的映射,我们定义f关于自变量A的导数为: ▽Af(A)=⎡⎣⎢⎢⎢⎢⎢⎢⎢∂f原创 2017-03-14 14:23:53 · 733 阅读 · 0 评论 -
【论文总结】深度网络算法用于风格转化
神经网络算法用于风格转化 原文:A Neural Algorithm of Artistic Style深度神经网络是一个处理图片的强大算法,他可以将图片中的各种特征提取出来,浅层的网络层用于提取图片中的各个简单的特征,比如横线,曲线等等,网络深层提取图片中更高级的特征,如曲线,圆,各种复杂形状。基于网络的这种特征,我们可以提取一些风格图片(style image)的纹理特征,将这些翻译 2018-01-26 10:55:56 · 367 阅读 · 0 评论