2025-02-15 21:22·物联全栈123
尊敬的诸位!我是一名物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与 AI 的无尽可能。
为了感谢各位的关注和支持。今天,我要向大家隆重介绍我的一个全新开源项目——PID-Agent,一个将传统PID控制与现代AI技术完美融合的智能PID参数调优助手。这不仅仅是一个项目,更是我在工业控制领域多年经验的结晶,希望能为大家带来启发,加速AI Agent技术在工作和生活中的应用。
为什么PID-Agent与众不同?
市面上有很多关于大模型提示词、AI的入门课程和教程,但我更希望分享的是实实在在的经验和可落地的项目。PID-Agent就是一个完整的、具有高度参考价值的PID Agent落地项目,它涵盖了:
- 硬件:通过串口与实际硬件设备通信。
- 大模型:利用大语言模型进行智能分析和参数优化。
- LangChain:构建AI Agent的核心框架。
- API:FastAPI构建的RESTful API,实现前后端分离。
- 前端:Streamlit打造的直观用户界面。
- 数据库 :用于存储实验数据。
项目地址:
https://github.com/mcp2everything/PID-agent/tree/main
PID-Agent:智能PID参数调优助手
PID-Agent的核心目标是解决传统PID控制中参数调优的难题。它通过以下几个方面实现:
智能调参:
AI驱动优化:PID-Agent利用LangChain和大语言模型分析温度曲线,提供专业的PID参数优化建议。
自适应调节:根据系统响应特性,自动调整控制参数,无需人工干预。
专家级分析:提供详细的性能指标分析和优化建议,让您深入了解系统特性。
实时监控:
动态曲线:实时绘制温度变化曲线,让您直观掌握系统状态。
参数跟踪:监控PID参数变化及其对系统性能的影响。
性能指标:显示响应时间、超调量、稳态误差等关键指标,全面评估控制效果。
硬件集成:
串口通信:支持多达16个独立控制通道,满足多场景应用需求。
实时数据:毫秒级数据采集和处理,确保控制的精确性。
即时控制:参数修改实时同步到硬件,实现快速响应。
用户界面:
可视化控制:基于Streamlit的直观操作界面,让PID控制变得简单易懂。
实时反馈:即时查看系统响应和控制效果,方便您进行调试和优化。
技术栈
- 前端:Streamlit
- 后端:FastAPI
- AI引擎:LangChain + LLM
- 硬件通信:PySerial
应用场景
PID-Agent的应用场景非常广泛,包括但不限于:
- 工业加热控制:精密温度控制、多区域协同控制、生产过程优化。
- 实验室设备:精确温度控制、实验数据记录、参数优化研究。
- 教育培训:PID控制原理演示、参数调节实践、系统响应分析。
创新特点
- AI辅助决策:智能分析系统响应,自动生成优化建议,持续学习改进。
- 全流程可视化:实时温度曲线、参数影响分析、性能指标跟踪,让您全面掌握系统状态。
- 灵活配置:多通道独立控制、参数范围可调、控制策略可配置,满足不同应用需求。
- 用户友好:直观的操作界面、清晰的数据展示、详细的优化建议,让PID控制不再复杂。
技术优势
- 实时性能:毫秒级数据采集、实时参数调整、即时响应分析。
- 可扩展性:模块化设计、易于集成、支持多种硬件。
- 可靠性:异常处理机制、数据备份恢复、稳定性保障。
- 智能化:AI辅助优化、自适应调节、专家经验积累。
未来展望
未来,PID-Agent将继续发展,包括:
- 深度学习增强:引入预测控制、优化策略学习、智能故障诊断。
- 功能扩展:多参数协同优化、高级控制策略、远程监控管理。
- 生态建设:开源社区建设、应用案例分享、技术经验交流。
快速上手
- 配置:复制.env.example为.env,并根据您的环境配置串口、API端口、大模型API密钥等。
- 安装依赖:使用uv和pip安装项目所需的Python库。
- 启动服务:分别启动FastAPI后端服务和Streamlit前端面板。
详细的配置和启动步骤,请参考GitHub仓库中的README文件。
总结
PID-Agent不仅仅是一个工具,更是一种理念——将传统控制理论与现代AI技术相结合,为工业控制、实验室研究等领域带来更智能、更高效、更易用的解决方案。我希望通过开源PID-Agent,与大家一起探索更多可能性,推动控制技术的进步与发展。
欢迎大家体验、反馈、贡献代码,让我们一起打造一个更强大的PID-Agent!
https://github.com/mcp2everything/PID-agent/tree/main