实用Agent开发教程:用LangChain和Gradio打造你的本地化AI助手

2025-02-21 21:00·物联全栈123

尊敬的诸位!我是一名物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与 AI 的无尽可能。

最近,RAG(检索增强生成)和Agent开发成为了技术圈的热门话题。今天,我们就来聊聊什么是Agent,并亲手用langchain调用本地ollama模型构建一个简单的Agent,让你快速体验Agent开发的乐趣。

Agent不仅仅是更聪明的聊天机器人,它们是能够感知环境、做出决策并采取行动的智能体。

先来看聊聊为什么需要了解Agent设计?

1. Agent能做什么?

Agent的能力远不止聊天,它更像一个“数字分身”,可以帮你处理各种任务,具体来说,Agent可以:

  • 信息处理大师:
    • 自动翻译: 跨越语言障碍,快速翻译各种文档、网页、对话。
    • 智能总结: 从海量信息中提炼要点,帮你快速掌握核心内容。
    • 深度分析: 分析数据、报告、趋势,提供洞察和建议。
    • 内容生成: 撰写报告、邮件、文章、代码等,提高内容生产效率。
  • 任务执行能手:
    • 自动化流程: 自动执行重复性任务,如数据录入、邮件回复、日程安排等。
    • 智能调度: 根据你的指令,协调多个工具和服务,完成复杂任务。
    • 主动服务: 根据你的习惯和偏好,主动提供信息、建议或执行任务。
  • 创意灵感伙伴:
    • 头脑风暴: 帮你发散思维,提供创新想法和解决方案。
    • 内容润色: 优化你的文案、设计、代码等,提升作品质量。
    • 个性化推荐: 根据你的兴趣,推荐相关资源、工具或灵感。

举例说明:

  • 职场人士: Agent可以帮你自动整理会议纪要、分析竞争对手报告、生成项目计划书等。
  • 自由职业者: Agent可以帮你管理项目进度、自动回复客户邮件、寻找新的工作机会等。
  • 创作者: Agent可以帮你收集素材、润色文案、生成设计草图等。
  • 普通用户: Agent根据你的阅读习惯推荐新闻,根据你的口味定制音乐歌单。

2. Agent与RAG的区别?

RAG(Retrieval-Augmented Generation,检索增强生成)和Agent是两种不同的技术,但它们可以结合使用,发挥更大的作用:

  • RAG:
    • 定义: 一种结合了检索和生成的技术,它首先从知识库中检索相关信息,然后利用这些信息生成更准确、更丰富的回复。
    • 核心: 知识库和生成模型。
    • 应用: 主要用于问答系统、聊天机器人等,提供更准确、更全面的答案。
  • Agent:
    • 定义: 能够感知环境、做出决策并采取行动的智能体。
    • 核心: 意图识别、工具选择、行动执行。
    • 应用: 范围更广,可以用于各种需要自主决策和行动的场景,如自动化任务、智能助手、流程优化等。

区别总结:

特征

RAG

Agent

核心

知识检索与生成

意图识别、决策与行动

能力

提供更准确、丰富的答案

感知环境、自主决策、执行任务

应用

问答系统、聊天机器人等

自动化、智能助手、流程优化等

自主性

相对较低

较高

是否需要行动

不需要

需要

RAG与Agent的关系:

  • RAG可以作为Agent的工具: Agent可以利用RAG技术,从知识库中获取信息,辅助决策和行动。例如,一个智能客服Agent可以利用RAG技术,从产品文档中检索信息,回答用户的问题。
  • Agent可以增强RAG的应用: Agent可以将RAG的输出作为输入,进行进一步处理,或与其他工具结合,完成更复杂的任务。例如,一个新闻摘要Agent可以利用RAG技术生成新闻摘要,然后自动发布到社交媒体。

3. Agent如何改变自由职业者和上班族?

Agent将对自由职业者和上班族的工作方式产生深远影响:

对于自由职业者:

  • 提高效率: Agent可以自动处理许多重复性、耗时的任务,如项目管理、客户沟通、财务管理等,让自由职业者有更多时间专注于核心业务。
  • 拓展业务: Agent可以帮助自由职业者寻找新的工作机会、拓展人脉、提升技能,从而获得更多的收入来源。
  • 提升竞争力: Agent可以帮助自由职业者提供更专业、更高效的服务,从而在竞争激烈的市场中脱颖而出。
  • 赋能创造: 摆脱重复工作,专注创意本身。

对于上班族:

  • 减轻负担: Agent可以帮助上班族处理日常工作中的琐碎任务,如邮件回复、数据整理、会议安排等,减轻工作压力。
  • 提升效率: Agent可以帮助上班族更快地完成任务、获取信息、做出决策,从而提高工作效率。
  • 赋能创新: Agent可以帮助上班族分析数据、发现趋势、寻找灵感,从而激发创新思维。
  • 促进协作: Agent可以作为团队协作的桥梁,帮助团队成员更好地沟通、共享信息、协同工作。

开始动手设计Agent

1. Agent的核心理念:意图识别与链式处理

Agent的核心在于“行动”。不同于传统的问答系统,Agent需要理解用户的意图,并据此选择合适的工具(或“链”)来完成任务。

  • 意图识别(Intent Recognition): 这是Agent的“大脑”,负责解读用户的需求。
  • 链式处理(Chain Processing): 这是Agent的“工具箱”,包含各种预定义的处理流程。

我们今天要构建的Agent,就基于这两个核心理念。

2. 动手实践:构建一个多功能AI助手

接下来,我们将使用LangChain和Gradio,一步步构建一个AI助手。LangChain是一个强大的Agent开发框架,而Gradio则能让我们快速创建交互界面。

2.1 环境准备

确保你已经安装了必要的Python库,建议使用python 3.11以及以上版本:

      pip install langchain langchain-core langchain-ollama gradio

另外你本地需要部署ollama,并且下载了phi3或qwen或者deepseek模型

2.2 代码解析

下面是Agent的核心代码,我会逐段解释:

 from langchain_core.prompts import ChatPromptTemplate
from langchain_ollama.llms import OllamaLLM
from langchain_core.output_parsers import StrOutputParser
from typing import Dict, Any
import json
import sys

class SimpleAgent:
    def __init__(self, model):
        self.model = model
        self.chains = self._initialize_chains()
        self.chat_history = []
    

  • 引入库: 导入必要的模块。
  • SimpleAgent类: 这是我们的Agent类。
    • __init__方法:初始化Agent,传入一个大语言模型(LLM),并初始化处理链。
    • chat_history:用于存储用户与agent的对话历史。
      def _initialize_chains(self) -> Dict[str, Any]:
        """初始化各种处理链"""
        def create_chain(template):
            prompt = ChatPromptTemplate.from_template(template)
            return prompt | self.model | StrOutputParser()
        
        return {
            "翻译": create_chain("将以下内容翻译成英文:\n{input}"),
            "总结": create_chain("简要总结以下内容:\n{input}"),
            "分析": create_chain(
                """分析以下内容:\n{input}\n
                要求:\n1. 提取关键点\n2. 分析主要观点\n3. 给出建议"""
            ),
            "创意": create_chain(
                """基于以下主题进行创意发散:\n{input}\n
                要求:\n1. 提供3个创新想法\n2. 每个想法的可行性分析\n3. 实施建议"""
            )
        }
    

  • _initialize_chains方法: 定义Agent的处理链。
    • create_chain函数:这是一个辅助函数,用于创建LangChain的处理链。它接收一个提示模板,并将其与模型和输出解析器连接起来。
    • 处理链字典: 定义了四个处理链:翻译、总结、分析、创意。每个链都有一个明确的提示模板,告诉LLM如何处理输入。

专业视角: 这里使用了LangChain的LCEL(LangChain Expression Language)语法,|符号表示将不同的组件连接成一个处理链。这种链式结构非常灵活,可以方便地扩展和修改。

      def _analyze_intent(self, user_input: str) -> str:
        """分析用户意图"""
        intent_prompt = ChatPromptTemplate.from_template(
            """分析用户输入,判断需要使用哪种处理链:
            用户输入: {input}
            
            可用的处理链:
            1. 翻译 - 进行中英文翻译
            2. 总结 - 总结主要内容
            3. 分析 - 深入分析内容
            4. 创意 - 创意发散思维
            
            只返回处理链名称,如:翻译、总结、分析、创意"""
        )
        
        intent_chain = intent_prompt | self.model | StrOutputParser()
        return intent_chain.invoke({"input": user_input}).strip()
    

  • _analyze_intent方法: 这是Agent的意图识别模块。
    • 提示模板: 定义了一个提示模板,要求LLM根据用户输入判断应该使用哪个处理链。
    • 创建链: 将提示模板与模型和输出解析器连接,形成一个意图识别链。
    • 调用: 使用.invoke()方法调用LLM,并返回识别出的意图(处理链名称)。

专业视角: 意图识别是Agent设计的关键。这里使用了LLM作为意图分类器,但也可以使用其他方法,如传统的机器学习分类器或基于规则的系统。

      def process(self, user_input: str) -> dict:
        """处理用户输入"""
        try:
            intent = self._analyze_intent(user_input)
            
            if intent not in self.chains:
                return {
                    "status": "error",
                    "message": f"未知的处理类型:{intent}"
                }
            
            result = self.chains[intent].invoke({"input": user_input})
            
            # 记录对话历史
            self.chat_history.append(("用户", user_input))
            self.chat_history.append(("助手", f"[{intent}]\n{result}"))
            
            return {
                "status": "success",
                "intent": intent,
                "result": result
            }
            
        except Exception as e:
            return {
                "status": "error",
                "message": str(e)
            }
    

  • process方法: 这是Agent的核心处理逻辑。
    • 意图识别: 调用_analyze_intent方法获取用户意图。
    • 处理链选择: 根据识别出的意图,选择相应的处理链。
    • 执行: 调用选定处理链的.invoke()方法,传入用户输入,获取结果。
    • 返回结果: 将处理结果封装成字典返回。
    • 错误处理 使用try except进行错误处理。

专业视角: 这里的处理流程非常清晰:意图识别 -> 处理链选择 -> 执行。这种模块化设计使得Agent易于扩展和维护。

      def create_ui(agent):
    """创建 Gradio 界面"""
    
    def process_message(message: str, history: list) -> list:
        """处理用户消息并返回更新后的对话历史"""
        if not message:
            return history

        try:
            result = agent.process(message)
            
            if result["status"] == "success":
                response = f"意图识别: {result['intent']}\n\n{result['result']}"
                history = history or []  # 确保history是列表
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": response})
            else:
                history = history or []
                history.append({"role": "user", "content": message})
                history.append({"role": "assistant", "content": f"处理失败: {result['message']}"})
            
            return history
        except Exception as e:
            history = history or []
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": f"错误: {str(e)}"})
            return history

    # 创建界面
    with gr.Blocks(title="AI 助手", theme=gr.themes.Soft()) as interface:
        gr.Markdown("""
        #  智能处理助手
        
        这个助手可以:
        1.  翻译 - 中英互译
        2.  总结 - 内容摘要
        3.  分析 - 深入分析
        4.  创意 - 创意发散
        
        ## 示例输入:
        - "将这句话翻译成英文:人工智能正在改变世界"
        - "总结一下:最近AI技术发展迅速,应用广泛..."
        - "分析:远程办公带来的影响"
        - "创意:如何改善城市交通拥堵问题"
        """)
        
        chatbot = gr.Chatbot(
            label="对话历史",
            height=500,
            show_copy_button=True,
            type="messages"  # 使用新的消息格式
        )
        
        with gr.Row():
            input_text = gr.Textbox(
                label="输入文本",
                placeholder="请输入需要处理的内容...",
                lines=3
            )
            
        with gr.Row():
            submit_btn = gr.Button("提交", variant="primary")
            clear_btn = gr.Button("清除历史")
            
        # 绑定事件
        submit_btn.click(
            process_message,
            inputs=[input_text, chatbot],  # 添加 chatbot 作为输入
            outputs=chatbot,
            queue=False
        ).then(
            lambda: "",
            None,
            input_text,
            queue=False
        )
        
        clear_btn.click(lambda: [], None, chatbot, queue=False)  # 返回空列表清除历史
            
    return interface
    

  • create_ui函数: 使用Gradio创建交互界面。
    • 布局: 使用gr.Blocks、gr.Markdown、gr.Chatbot、gr.Textbox、gr.Button等组件构建界面。
    • 事件绑定: 使用.click()方法将按钮点击事件与process_message函数绑定。
    • 更新对话历史: process_message接受用户输入,调用Agent的process方法,并将结果添加到Gradio聊天机器人的历史记录。

专业视角: Gradio使得创建交互界面变得非常简单。你可以在此基础上,进一步美化界面,添加更多交互元素。

      def main():
    try:
        # 初始化模型
        model = OllamaLLM(
            model="phi3:latest",
            temperature=0.7,
            num_ctx=2048,
            base_url="http://localhost:11434",
        )
        
        # 创建 Agent
        agent = SimpleAgent(model)
        
        # 创建并启动 UI
        interface = create_ui(agent)
        interface.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            inbrowser=True
        )
        
    except Exception as e:
        print(f"程序错误: {str(e)}")
        print("\n按回车键继续...")
        input()

if __name__ == "__main__":
    main()
    

  • main函数: 程序的入口。
    • 初始化模型: 使用OllamaLLM加载本地部署的Ollama大语言模型。
    • 创建Agent: 实例化SimpleAgent类。
    • 启动界面: 创建并启动Gradio界面。

2.3 运行Agent

  1. 保存代码为agent.py。
  2. 在命令行中运行:python agent.py
  3. 打开浏览器,访问显示的地址(通常是http://localhost:7860)。

现在,你就可以和你的AI助手互动了!

3. 进阶思考:Agent的未来

我们今天构建的Agent只是一个简单的示例,但它展示了Agent开发的基本流程。未来,Agent的发展方向包括:

  • 多模态Agent: 能够处理文本、图像、音频等多种输入。
  • 自主Agent: 能够在没有明确指令的情况下,自主完成复杂任务。
  • 协作Agent: 多个Agent协同工作,解决更复杂的问题。
  • Agent与物联网: Agent可以作为物联网设备的“大脑”,实现设备的智能化控制和管理。

4. 互动环节

目前我已经设计出了自媒体新闻汇集智能体,github趋势汇总智能体,文章编写和生成视频智能体,工业PID算法智能体等。核心思想就是将工作流程交给agent来完成!

  • 你觉得Agent在哪些领域最有潜力?
  • 你还想给这个Agent添加什么功能?
  • 你在Agent开发中遇到了哪些挑战?

欢迎在评论区留言,分享你的想法和经验!让我们一起探索Agent的无限可能!

Langchain Gradio是一种语言链区块链项目,旨在通过区块链技术智能合约实现全球多语言的互相翻译沟通。它的核心理念是通过利用区块链的去中心化不可篡改的特性,为用户提供安全、高效、准确的翻译服务。 Langchain Gradio的工作原理是将用户提交的翻译任务通过智能合约分配给区块链网络中的矿工节点。这些矿工节点会利用自身的计算能力语言技能,对任务进行翻译,并将结果返回给用户。通过智能合约的执行,确保了任务的安全性准确性。 Langchain Gradio具有以下特点优势。首先,它能够实现多语言的翻译,解决了跨语言交流的障碍。其次,由于采用了区块链技术,翻译任务能够实现去中心化分布式处理,提高了翻译的效率准确度。此外,用户的隐私数据安全得到了保护,不会被泄露滥用。 Langchain Gradio在实际应用中有广阔的前景。它可以应用于国际商务、旅游、研究教育等领域,为不同国家地区之间的交流搭建桥梁。同时,由于其区块链技术的特性,Langchain Gradio还具备一定的抗干扰抵抗恶意攻击的能力,保证了系统的安全稳定运行。 总而言之,Langchain Gradio作为一种语言链区块链项目,通过区块链技术智能合约实现全球多语言的翻译沟通。它拥有高效、安全、准确的特点,面向多个领域具有广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值