参考:http://blog.csdn.net/liuyan20062010/article/details/78872729
http://blog.csdn.net/cs_leebo/article/details/64444243
https://www.cnblogs.com/willnote/p/6746499.html
http://blog.csdn.net/chenweiqian_zy/article/details/59109596
http://blog.csdn.net/nucyubg/article/details/52015426
1. 安装Anaconda
在清华大学 TUNA 镜像源选择对应的操作系统与所需的Python版本下载Anaconda安装包。Windows环境下的安装包直接执行.exe文件进行安装即可,Ubuntu环境下在终端执行(安装时可以修改默认路径,后面的环境配置,还是选择‘yes’)
bash Anaconda2-4.3.1-Linux-x86_64.sh #Python 2.7版本(推荐)
或者
$ bash Anaconda3-4.3.1-Linux-x86_64.sh #Python 3.5 版本
2. 创建一个虚拟环境(在此环境内可以任意配置而不会影响系统的环境)-----(不知道为啥配置python3.6不成功,尽量避开此坑)
conda create -n 环境名 -c 镜像源
例:
-
Python 2.7
$ conda create -n tensorflow python=2.7(推荐) -
Python 3.4
$ conda create -n tensorflow python=3.4 -
Python 3.5
$ conda create -n tensorflow python=3.5 - 若上面安装anaconda时修改路径了,conda命令可能找不到,此时输入应该是:anaconda2/bin/conda create -n tensorflow python=2.7
- 或者回到默认路径下,新建.profile文件(直接输入 vi .profile)写下下面两行代码,保存,即可直接conda命令了
- # added by Anaconda2 4.3.1 installer
export PATH=“/home/data/liangxiaoyun/anaconda2/bin:$PATH" (安装路径)
-
用户安装的不同python环境都会被放在目录
~/anaconda/envs
下,可以在命令中运行conda info -e
查看已安装的环境,当前被激活的环境会显示有一个星号或者括号。
3.激活或关闭环境
安装完后激活环境
source activate tensorflow (source anaconda2/bin/activate tensorflow )
关闭环境
source deactivate tensorflow
4. 在激活环境下安装GPU版本的tensorflow
$ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
会自动安装需要的依赖库,包括cuda ,cudnn (时间会很长)
测试TensorFlow是否安装成功:
1、打开终端输入cd tensorflow/ 2、激活环境source activate tensorflow 3、python 4、输入python后输入以下示例 >>> import tensorflow as tf >>> hello = tf.constant('Hello, TensorFlow!') >>> sess = tf.Session() >>> print sess.run(hello) Hello, TensorFlow! >>> a = tf.constant(10) >>> b = tf.constant(32) >>> print sess.run(a+b) 42 >>> 5、测试成功接下来首先退出python 按快捷键Ctrl+D 6、再退出tensorflow 在命令行输入命令:source deactivate tensorflow
5. 安装opencv3.1.0
在激活环境下
conda install --channel
https://conda.anaconda.org/menpo opencv3
测试安装是否成功:
ubuntu下打开python,在终端输入:python
然后:import cv2
如果不报错,那就成功了 !
6. 重新安装 ipython,jupyter
在激活环境下
ipython安装:conda install ipython
检测是否安装成功:ipython
输出版本号等信息则成功
jupyter安装: conda install jupyter (很慢)
安装完后在windows上通过浏览器远程连接Linux服务器的jupyter,参考下面链接:
测试是否安装成功:jupyter notebook
会弹出浏览器,开启python之旅
不重新安装依然会有import cv2 ;import tensorflow as tf 出问题;重新安装jupyter的原因是在tensorflow环境下和不在tensorflow环境下,两者是不一样的安装路径的,对于使用有影响
7. 安装matplotlib, pillow
在激活环境下
conda install matplotlib
conda install pillow
不安装会出现 如下问题
No module named 'matplotlib'
ValueError: Only know how to handle extensions: ['png']; with Pillow installed matplotlib can handle more images
8. 关闭环境 source deactivate tensorflow
9. source activate tensorflow 相当于重启生效
10、删除虚拟环境。(不能删)
使用命令conda remove -n your_env_name(虚拟环境名称) --all, 即可删除。
conda remove -n tensorflow --all
11、删除环境中的某个包。
使用命令conda remove --name $your_env_name $package_name 即可