Ubuntu+Anaconda+TensorFlow+opencv+Python +jupyter+matplotlib+pillow安装

参考:http://blog.csdn.net/liuyan20062010/article/details/78872729

http://blog.csdn.net/cs_leebo/article/details/64444243

      https://www.cnblogs.com/willnote/p/6746499.html

      http://blog.csdn.net/chenweiqian_zy/article/details/59109596

      http://blog.csdn.net/nucyubg/article/details/52015426

1.  安装Anaconda

清华大学 TUNA 镜像源选择对应的操作系统与所需的Python版本下载Anaconda安装包。Windows环境下的安装包直接执行.exe文件进行安装即可,Ubuntu环境下在终端执行(安装时可以修改默认路径,后面的环境配置,还是选择‘yes’)

bash Anaconda2-4.3.1-Linux-x86_64.sh   #Python 2.7版本(推荐)

或者

$ bash Anaconda3-4.3.1-Linux-x86_64.sh  #Python 3.5 版本

2. 创建一个虚拟环境(在此环境内可以任意配置而不会影响系统的环境)-----(不知道为啥配置python3.6不成功,尽量避开此坑) 

    conda create -n 环境名 -c 镜像源

例:

  • Python 2.7
    $ conda create -n tensorflow python=2.7(推荐)

  • Python 3.4
    $ conda create -n tensorflow python=3.4

  • Python 3.5
    $ conda create -n tensorflow python=3.5

  • 若上面安装anaconda时修改路径了,conda命令可能找不到,此时输入应该是:anaconda2/bin/conda create -n tensorflow python=2.7
  • 或者回到默认路径下,新建.profile文件(直接输入  vi .profile)写下下面两行代码,保存,即可直接conda命令了
  •  # added by Anaconda2 4.3.1 installer
     export PATH=“/home/data/liangxiaoyun/anaconda2/bin:$PATH"          (安装路径)
  • 用户安装的不同python环境都会被放在目录~/anaconda/envs下,可以在命令中运行conda info -e查看已安装的环境,当前被激活的环境会显示有一个星号或者括号。

3.激活或关闭环境

    安装完后激活环境

     source activate tensorflow   (source anaconda2/bin/activate tensorflow )

   关闭环境
    source deactivate tensorflow

4. 在激活环境下安装GPU版本的tensorflow

  $ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu

    会自动安装需要的依赖库,包括cuda ,cudnn  (时间会很长)  

测试TensorFlow是否安装成功:

1、打开终端输入cd tensorflow/

2、激活环境source activate tensorflow

3、python

4、输入python后输入以下示例

>>> import tensorflow as tf
>>> hello = 
tf.constant('Hello, TensorFlow!')
>>> sess = 
tf.Session()
>>> print sess.run(hello)
Hello, 
TensorFlow!
>>> a = tf.constant(10)
>>> b = 
tf.constant(32)
>>> print sess.run(a+b)
42
>>>

5、测试成功接下来首先退出python 按快捷键Ctrl+D

6、再退出tensorflow 在命令行输入命令:source deactivate tensorflow

5. 安装opencv3.1.0

   在激活环境下

   conda install --channel https://conda.anaconda.org/menpo opencv3

测试安装是否成功:

ubuntu下打开python,在终端输入:python

然后:import cv2

如果不报错,那就成功了 !

6. 重新安装 ipython,jupyter

在激活环境下

ipython安装:conda install  ipython

检测是否安装成功:ipython

输出版本号等信息则成功

jupyter安装: conda install jupyter  (很慢)

安装完后在windows上通过浏览器远程连接Linux服务器的jupyter,参考下面链接:

http://blog.csdn.net/liuyan20062010/article/details/78890336

测试是否安装成功:jupyter notebook

会弹出浏览器,开启python之旅

不重新安装依然会有import  cv2    ;import  tensorflow as tf  出问题;重新安装jupyter的原因是在tensorflow环境下和不在tensorflow环境下,两者是不一样的安装路径的,对于使用有影响

7. 安装matplotlib, pillow

在激活环境下

conda install matplotlib

conda install pillow

不安装会出现 如下问题

No module named 'matplotlib'

ValueError: Only know how to handle extensions: ['png']; with Pillow installed matplotlib can handle more images

8.  关闭环境   source deactivate tensorflow

9. source activate tensorflow  相当于重启生效

10、删除虚拟环境。(不能删)

使用命令conda remove -n your_env_name(虚拟环境名称) --all, 即可删除。

conda remove -n tensorflow --all

11、删除环境中的某个包。

使用命令conda remove --name $your_env_name  $package_name 即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值