数论第二周

Congruence(同余)

Let 𝑎, 𝑏, 𝑚 be integers, with 𝑚 ≠ 0. Say 𝑎 is congruent to 𝑏 modulo 𝑚 (𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚) if 𝑚| (𝑎 − 𝑏) .
Example:
3 ≡ 27 𝑚𝑜𝑑 12
−3 ≡ 11 𝑚𝑜𝑑 7

if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑚 ,
𝑎 + 𝑐 ≡ 𝑏 + 𝑑 𝑚𝑜𝑑 𝑚
𝑎𝑐 ≡ 𝑏𝑑 𝑚𝑜𝑑 𝑚

Likewise,
if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 , then 𝑎𝑘 ≡ 𝑏𝑘 𝑚𝑜𝑑 𝑚(√)

If 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑚 , then 𝑎𝑐 ≡ 𝑏𝑑 𝑚𝑜𝑑 𝑚 .(×)
If 𝑎𝑥 ≡ 𝑏𝑥 𝑚𝑜𝑑 𝑚 , then 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 .(×)

Definition Residue System(剩余系)

A complete residue system(完全剩余系) mod 𝑚 is a collection of integer 𝑎1𝑎2 ⋯ 𝑎𝑚 such
that 𝑎𝑖 ≠ 𝑎𝑗 𝑚𝑜𝑑 𝑚 if 𝑖 ≠ 𝑗 and any integer 𝑛 is congruent to some 𝑎𝑖 𝑚𝑜𝑑 𝑚.
A reduced residue system(简化剩余系) mod 𝑚 is a collection of integer 𝑎1𝑎2 ⋯ 𝑎𝑚 such that
𝑎𝑖 ≠ 𝑎𝑗 𝑚𝑜𝑑 𝑚 if 𝑖 ≠ 𝑗 and 𝑔𝑐𝑑 𝑎𝑖, 𝑚 = 1 for all 𝑖, and any integer 𝑛 coprime to 𝑚
must be congruent to some 𝑎𝑖 𝑚𝑜𝑑 𝑚.

Example:

If m=9,then
Complete Residue System: {1,2,3,4,5,6,7,8,9} 1~m
Reduced Residue System: {1,2,4,5,7,8} m的完全剩余系中与m互素的数构成的子集

Euler’s Totient Function(欧拉函数)

The number of elements in a reduced residue system mod 𝑚 is called Euler’s Totient Function 𝜙(𝑚) .

𝜙 (9) = 6   𝜙(10) = 4

就是简约剩余系中元素个数

Euler’s Theorem(欧拉定理)

后面会用来证明费马小定理

if\, gcd(a,m)=1\: \: then\, a^{\Phi{m} } \equiv 1\, mod\, m

3^{\Phi (10)}\, =\, 81\, \equiv \, 1\, mod\, 10

Fermat’s little Theorem(费马小定理)

if 𝑝 is a prime and 𝑎 is an integer, then a^{p}\, \equiv \, a\, mod\, p

 证明非常简洁

 Inverse of elements mod 𝑚(模逆元)

If 𝑔𝑐𝑑(𝑎, 𝑚) = 1, then there is a unique integer 𝑏 mod 𝑚 such that 𝑎𝑏 ≡ 1 mod 𝑚. The 𝑏 is denoted as \frac{1}{a} or a^{-1} mod 𝑚.

example:

\frac{1}{5} mod 7 = 5^{-1} mod 7 = 3.

x^{-1} mod p = ?就是求一个数与x相乘后mod p等于1

Wilson’s Theorem(威尔逊定理)

If 𝑝 is a prime then (𝑝 − 1) ! ≡ −1 𝑚𝑜𝑑 𝑝

Congruence equation(同余方程)

A congruence equation is of the form a_{n}x^{n}+a_{n-1}x^{n-1}+...+a0 ≡ 0 𝑚𝑜𝑑 𝑚
where {𝑎𝑛, 𝑎𝑛−1, ⋯ , 𝑎0} are integers.Solution of the congruence equation are integers or residue classes mod 𝑚 that satisfy the equation.

同余方程(组)的解为整数或剩余集mod m满足方程的数

example:

x^{2} ≡ 1 𝑚𝑜𝑑 15. Answer is {±1, ±4 𝑚𝑜𝑑 15}.

Linear Congruence Equation (线性同余方程)

A congruence equation of degree 1 (𝑎𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑚)

Theorem: Let 𝑔 = 𝑔𝑐𝑑(𝑎,𝑚), then there is a solution to 𝑎𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑚 if and only if
𝑔|𝑏. If it has solutions, then it has exactly 𝑔 solutions mod 𝑚.

example:

4𝑥 ≡ 6 𝑚𝑜𝑑 10
𝑔 = 𝑔𝑐𝑑(4,10) = 2 and 2|6
In fact, it has 𝑔 = 2 solutions.

Chinese Remainder Theorem(中国剩余定理)

 给定一系列a,m 求解x

 M_{i} =\frac{\prod m_{i}}{m_{i}}
y_{i} = M_{i}^{-1} \, mod\,m_{i}
x = \sum a_{i}M_{i}y_{i}\,mod\,\prod m_{i}

以一道作业题为例:

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 数论讲义第二版上册pdf是一本关于数论的教材,主要介绍了数论的基本概念、方法和定理。这本书的第二版相比于第一版,在内容上进行了更新和修订,更加全面和细致地介绍了数论的各个方面。 数论是研究整数性质的数学分支,是数学的一个重要分支之一。它的研究对象是整数,并通过一系列的方法和技巧来研究整数的各种性质。数论在密码学、编码理论、组合数学等领域有广泛的应用。 这本讲义上册pdf的内容包括了数论的基本性质、整数的分类、素数的性质、同余关系、欧几里得算法、二次剩余等内容。这些内容涵盖了数论的基础知识,并引出了更加深入的研究方向。 读者可以通过学习这本讲义,系统地了解和学习数论的基本原理和方法,掌握数论的基本技巧和应用。讲义给出了详细的证明和例题,帮助读者更好地理解和掌握数论的概念和定理。 这本讲义的第二版集结了数论研究的最新成果和进展,对于对数论有兴趣的学生和研究者来说是一本很好的参考书。无论是初学者还是有一定数论基础的读者,都可以通过这本讲义来提升自己的数论水平。 总之,数论讲义第二版上册pdf是一本关于数论的教材,通过系统的介绍来帮助读者理解和掌握数论的基本概念和方法,是学习数论的一本重要参考书。 ### 回答2: 数论讲义第二版上册PDF是一本关于数论的教材,适合学习和研究数论领域的读者使用。这本讲义主要涵盖了数论的基础知识和概念,以及一些常见的数论问题和定理。通过学习这本讲义,读者可以系统地了解和掌握数论的理论和方法。 这本讲义的上册PDF文件包含了许多章节,每个章节都介绍了一个特定的数论主题。例如,第一章介绍了数学归纳法和整数的基本性质;第二章讨论了整数的因子和倍数;第三章讲解了最大公因数和最小公倍数的概念和计算方法;第四章介绍了素数的性质和应用;第五章研究了同余方程和同余定理的相关内容等。 这本讲义的特点之一是理论与实践相结合。每个章节都包含了大量的例题和习题,读者可以通过解题来加深对数论知识的理解和掌握。此外,讲义还提供了一些数论问题的解答和证明,帮助读者更好地理解相关定理和方法。 除了基础知识和理论,这本讲义还涉及了一些高级的数论概念和技巧。例如,讲义的最后几章讨论了欧拉函数、费马小定理、同余定理的应用、二次剩余等内容,这些内容对于深入研究数论和解决复杂的数论问题非常有帮助。 总的来说,数论讲义第二版上册PDF是一本全面且系统地介绍数论基础知识和方法的教材。通过学习和使用这本讲义,读者可以提高自己在数论领域的知识和技能,进一步拓宽数学思维的广度和深度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值