数论第四周

Classical Modular polynomial(模多项式)

Theorem A congruence 𝑓(𝑥)≡ 0 mod 𝑝 (𝑝 is a prime) of degree 𝑛 has at most
𝑛 solutions.

p是质数的话,f(x)次数是几就有几个解

Corollary If a_{n}x_{n} + a_{n-1}x_{n-1}+...+a_{0}≡ 0 𝑚𝑜𝑑 𝑝 has more than 𝑛 solutions, then all
𝑎𝑖 ≡ 0 𝑚𝑜𝑑 𝑝.

就是对上面的定理加以限定,能让上面定理成立的话,必须多项式所有系数不同时为p的倍数

Theorem Let f(x) = x_{n}+a_{n-1}x_{n-1}+...+a_{0},𝑓(x) ≡ 0 mod 𝑝 has exactly 𝑛 distinct solutions if and only if 𝑓(𝑥) divides x^{p}-x\, mod\,p.

Namely, there exists 𝑔(𝑥) ∈ 𝑍(𝑥) such that f(x)g(x)\,=\,x^{p} - x\, mod\,p  as polynomials.

两个前提条件

1.f(x)| x^{p}-x\,mod\,p

2.f(x) ≡ 0 mod p

Corollary If 𝑑|𝑝 − 1 then x^{d}  ≡ 1 𝑚𝑜𝑑 𝑝 has exactly 𝑑 distinct solutions mod 𝑝.

Order(阶)

定义

If 𝑔𝑐𝑑(𝑎, 𝑚) = 1 and ℎ is the smallest positive integer such that a^{h} ≡ 1 mod 𝑚
then say ℎ is the order of 𝑎 mod 𝑚. Notation: ℎ = ord_{m}(a) .

a,m互质情况下,找到最小正整数h满足 a^{h} ≡ 1 mod 𝑚,此时h就是a%m的阶

上课的时候画了一大张表找了半天规律

行为n,列为k,结果为n^{k}\,mod\,13

 
Lemma. Let ℎ = ord_{m}(a). The set of integers 𝑘 such that a^{k} ≡ 1 mod 𝑚 is exactly
the set of multiples of ℎ.

a的k次方去%m等与1时,此时k一定是阶的倍数

Lemma. If 𝑎 has order ℎ mod 𝑚 and 𝑏 has order 𝑘 mod 𝑚, and 𝑔𝑐𝑑 (ℎ, 𝑘) = 1,
then 𝑎𝑏 has order ℎ𝑘 mod 𝑚.

a%m的阶数为h,b%m的阶数为k,h,k互质时,(ab)%m的阶数为hk

很好说明(ab)^{hk} \equiv a^{hk} b^{hk} \equiv 1^{k} 1^{h} \equiv 1\,mod\,m

原根只是开了个头归到下周吧

 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值