Classical Modular polynomial(模多项式)
Theorem A congruence 𝑓(𝑥)≡ 0 mod 𝑝 (𝑝 is a prime) of degree 𝑛 has at most
𝑛 solutions.
p是质数的话,f(x)次数是几就有几个解
Corollary If ≡ 0 𝑚𝑜𝑑 𝑝 has more than 𝑛 solutions, then all
𝑎𝑖 ≡ 0 𝑚𝑜𝑑 𝑝.
就是对上面的定理加以限定,能让上面定理成立的话,必须多项式所有系数不同时为p的倍数
Theorem Let ,𝑓(x) ≡ 0 mod 𝑝 has exactly 𝑛 distinct solutions if and only if 𝑓(𝑥) divides
.
Namely, there exists 𝑔(𝑥) ∈ 𝑍(𝑥) such that as polynomials.
两个前提条件
1.
2.f(x) ≡ 0 mod p
Corollary If 𝑑|𝑝 − 1 then ≡ 1 𝑚𝑜𝑑 𝑝 has exactly 𝑑 distinct solutions mod 𝑝.
Order(阶)
定义
If 𝑔𝑐𝑑(𝑎, 𝑚) = 1 and ℎ is the smallest positive integer such that ≡ 1 mod 𝑚
then say ℎ is the order of 𝑎 mod 𝑚. Notation: ℎ = .
a,m互质情况下,找到最小正整数h满足 ≡ 1 mod 𝑚,此时h就是a%m的阶
上课的时候画了一大张表找了半天规律
行为n,列为k,结果为
Lemma. Let ℎ = . The set of integers 𝑘 such that
≡ 1 mod 𝑚 is exactly
the set of multiples of ℎ.
a的k次方去%m等与1时,此时k一定是阶的倍数
Lemma. If 𝑎 has order ℎ mod 𝑚 and 𝑏 has order 𝑘 mod 𝑚, and 𝑔𝑐𝑑 (ℎ, 𝑘) = 1,
then 𝑎𝑏 has order ℎ𝑘 mod 𝑚.
a%m的阶数为h,b%m的阶数为k,h,k互质时,(ab)%m的阶数为hk
很好说明
原根只是开了个头归到下周吧