最近开始整理python的资料,博主建立了一个qq群,希望给大家提供一个交流的平台 78486745 。
前言:python由于GIL
(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如微服务框架japronto
,每秒请求数可达百万级。
python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio
是python3.4版本引入到标准库,python2x没有加这个库,到了python3.5又加入了async/await特性。
在学习asyncio
之前,我们先来理清楚同步/异步的概念:
-
同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。
-
异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。
一、asyncio
下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)
模拟耗时1秒的io操作。
同步代码:
import time
def hello():
time.sleep(1)
def run():
for i in range(5):
hello()
print('Hello World:%s' % time.time()) # 任何伟大的代码都是从Hello World 开始的!
if __name__ == '__main__':
run()
输出:(间隔约是1s)
Hello World:1527595175.4728756
Hello World:1527595176.473001
Hello World:1527595177.473494
Hello World:1527595178.4739306
Hello World:1527595179.474482
异步代码:
import time
import asyncio
# 定义异步函数
async def hello():
asyncio.sleep(1)
print('Hello World:%s' % time.time())
def run():
for i in range(5):
loop.run_until_complete(hello(