泰波拿契數 (Tribonacci Number) 即把費波拿契數 (Fibonacci Number) 的概念推廣至三個數。
T零 = 零, T一 = T二 = 一, Tn = Tn-一 + Tn-二 + Tn-三
请你写一个算法,输入n,输出第n个Tribonacci数mod 2009的结果。
这个标题是泛滥名企的笔试口试题,据我所知,二零零九年微软海笔就出了这个题。此外据称google也出国这个标题。这个标题的美,亏得于它有良好的界别度。
这个标题有三种解法。你采取什么算法,你的水准就一览无遗了。
第一看第一种解法,也是最容易,最简略想到的。
递归法:代码如次:
Copy code
#include
#include
#include
using namespace std;
#define THRESHOLD 2009
#define DEAL(x) ((x) < THRESHOLD ? (x) : (x) % THRESHOLD)
int tribonacci_v一(int n)
{
if (n <= 二)
return n == 零 ? 零 : 一;
else
{
int k =
tribonacci_v一(n - 一) + tribonacci_v一(n - 二) + tribonacci_v一(n - 三);
return DEAL(k);
}
}
采取递归的步骤亟需大量的反复计算。
透过测试,在ubuntu + gcc -o + p四 2.4GHz的机器上,100都急需算良久。
如若你采取这种算法的话,毫无疑问。你是不可能PASS笔试的。
算法2:采取递推的步骤:
这种步骤也很简单,头资料定义的宏已经在上面代码有了,函数代码如次:
Copy code
int tribonacci_v二(int n)
{
int res[] = {零,一,一,二};
for (int i = 三;i <= n;i++)
{
res[三] = res[二] + res[一] + res[零];
res[三] = DEAL(res[三]);
res[零] = res[一];
res[一] = res[二];
res[二] = res[三];
}
return n <= 二 ? res[n] : res[二];
}
采取递推的算法化除了很多反复计算,彼时间复杂度是线性的,只扫描一遍O(n).
经测试,一百万之内的数目字可以瞬即失去答案。1千万的话也能
泰波拿契數 (Tribonacci Number) 即把費波拿契數
最新推荐文章于 2021-04-05 09:55:52 发布
本文介绍了泰波拿契数(Tribonacci Number)的概念,给出了三种不同的算法实现:递归法、递推法和矩阵乘法法。递归法虽然直观但效率低,递推法线性时间复杂度,矩阵乘法法具有O(logn)的时间复杂度,是效率最高的解决方案。文章通过实例展示了不同算法在计算效率上的差异,并指出在笔试面试中选择算法的重要性。
摘要由CSDN通过智能技术生成