双目视差与深度关系推导

相机成像的模型如下图所示:
P为空间中的点,P1和P2是点P在左右像平面上的成像点,f是焦距,OR和OT是左右相机的光心。由下图可见左右两个相机的光轴是平行的。XR和XT是两个成像点在左右两个像面上距离图像左边缘的距离。

 

只要把这下面几点说清楚就很简单了
L为像面的长度
关于光轴对称
视差为Xr-Xt

 

 

若两个相机已经校正完成即达到极线平行,两条光轴方向也平行。则视差和物体深度的关系式如下:

(1)

 

 

可推导到:

(2)

证明过程: 已知:


由相似三角形原理:

 

(1)+(2)有:

 

(5)
其中b1可以用b、XR和XT表示。


可得(5)式变为(1)式:

。证毕。

由上面两幅图,可知距离像面越近的点,它在左右相机中的视差越大,距离像面越远的点,它在左右相机中的视差越小。
深度Z和视差的关系图如下:

 



作者:Persistently
链接:https://www.jianshu.com/p/ee3872dc988b
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

双目深度估计是一种基于双目摄像头获取物体深度信息的技术。它通过计算左右两个摄像头图像之间的视差(disparity),可以推导出物体到相机的距离信息。 实现双目深度估计的一般步骤如下: 1. 摄像头校准:在开始深度估计之前,需要对双目摄像头进行校准。校准主要包括确定摄像头之间的相对位置和姿态,以及摄像头的内参信息。校准一般通过拍摄棋盘格等特定图案来实现。 2. 图像预处理:对于左右两个摄像头的图像,需要进行一些预处理操作,比如去除图像畸变、调整亮度和对比度等。这些操作有助于提高后续深度估计算法的准确性。 3. 特征提取与匹配:在左右两个图像提取特征点,并对这些特征点进行匹配。常用的特征点包括角点、边缘等。匹配可以使用特征描述子比较相似性,从而得到特征点的对应关系。 4. 计算视差:通过匹配得到的特征点对应关系,计算视差视差表示的是同一个物体在左右摄像头图像上的像素差异。视差越大,则物体离相机越近,反之则物体离相机越远。 5. 深度计算:利用视差与摄像头的距离、基线距离等参数,即可计算出物体到相机的深度深度计算可以采用三角测量法或立体几何学等方法。 6. 深度图像生成:将深度数据转换为深度图像,为后续的三维重建和应用提供方便。深度图像可以通过可视化的方式呈现,使深度信息更直观。 综上所述,实现双目深度估计需要进行摄像头校准、图像预处理、特征提取与匹配、视差计算、深度计算和深度图像生成等步骤。这是一项较为复杂的计算机视觉任务,但在实际应用具有广泛的价值和意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值