# 2018.5.30 python作业：scipy exercise

Exercise 10.1: Least squares Generate matrix A ∈ Rm×n with m > n. Also generate some vector b ∈ Rm. Now ﬁnd x = argminxkAx−bk2. Print the norm of the residual.

（使用最小二乘法公式即可）

import numpy as np
import scipy.linalg as sl

m = int(input("Please input m: "))
n = int(input("Please input n: "))
if n > m:
m, n = n, m
A = np.random.rand(m, n)
b = np.random.rand(m, 1)
A = np.mat(A)
b = np.mat(b)
x = sl.inv(A.T * A) * A.T * b
print(x) 

Exercise 10.2: Optimization Find the maximum of the function

（其实根据函数图像可大概知道最小值区间，然后求局部最小值即可）

import numpy as np
import scipy.optimize as so
import math

def func(x):
return (-(math.sin(x-2)**2)*math.exp(-(x ** 2)))

a = so.fminbound(func, -10, 10)
print(-func(a))
Exercise 10.3: Pairwise distances Let X be a matrix with n rows and m columns. How can you compute the pairwise distances between every two rows?
As an example application, consider n cities, and we are given their coordinates in two columns. Now we want a nice table that tells us for each two cities, how far they are apart.

Again, make sure you make use of Scipy's functionality instead of writing your own routine.

import numpy as np
import scipy.spatial.distance as ssd
import math

m = int(input("Please input m: "))
n = int(input("Please input n: "))
X = np.random.rand(m, n)
Y = ssd.pdist(X)
z = ssd.squareform(Y)
print(z)