打造Ai作图studio需要哪些工具

这篇文章依然是比较轻松的方式跟大家介绍Ai生成会使用到的一些工具,希望这些工具可以帮助到你更好的更稳定的快捷的生成高质量图片。说来轻松其实也不算轻松,虽然我已经按照生成的链路对工具做了规整。但是里面涉及到的工具其实确实不算少,并且很多工具其实是一类工具(就是只是给了个例子,要用好可能还得自己做更进一步挑选适配)。要理解每个工具在自己生产中如何使用才能做到提效提质,那确实得花一番工夫去了解工具原理,现在工具能做到什么程度,自己要如何改造工具。

Ai生成图片已经开始慢慢由toy变成了可以稳定生成的链路。大有计算成像平民化大众化链路趋势,1.计算图像学高升的数学知识+牛逼的编程技巧才能实现图像创作——专业管线渲染计算成像;2.Ai作图你只要会说话,就能生成一个不错的图片,然后加上各种Ai模型配合(你要了解使用原理)就能生成还算专业图片——平民化计算成像。

训练辅助工具

图片打标

图片自然描述-image caption

https://huggingface.co/Salesforce/blip-image-captioning-large

图片打标——iprompt

https://huggingface.co/spaces/hysts/DeepDanbooru

prompt是文本生成图,无中生有的核心。所以prompt的工具其实还有非常多,大家可以日常整理手机,当然我也会持续更新此文档。https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Extensions-Prompt

https://github.com/adieyal/sd-dynamic-prompts

图片质量打分工具

https://github.com/tsngo/stable-diffusion-webui-aesthetic-image-scorer

图片扩充

尺寸调整

这个难点在于如何识别出物体位置、边界然后做图片归一化

https://github.com/nachifur/MulimgViewer

物体边界识别

https://huggingface.co/keremberke/yolov8m-building-segmentation

物体轮廓线识别

https://bowenc0221.github.io/maskformer/

内容填充

https://huggingface.co/spaces/nielsr/text-based-inpainting

图片增强

https://github.com/albumentations-team/albumentations

人像工具

人脸调整

生成清晰的人脸https://huggingface.co/spaces/sczhou/CodeFormer

来张实际效果

手指调整

1.如果出现手指可以描述是五个手指

2.利用negative prompt把手指不正常的去处

3.训练一个正面人物手指处理lora

多手调整

1.训练模型时候加重negative prompt人物手的描述权重

2.训练一个人物手脚过滤模型

产图工具

模型

通用内容模型
SD原生模型:

sd1.5、sd2.1

https://stablediffusionweb.com/

写实模型:
dreamlike-photoreal-2.0
二次元模型:

novel ai

https://huggingface.co/andite/anything-v4.0

专用内容模型

亚洲人脸模型:

https://civitai.com/models/6925/realdosmix)+Realistic

https://huggingface.co/dcy/AsiaFacemix

插画风格:

q萌:kawaye1_6000(Q萌)

厚涂:

FloydianSound/WLOP_Diffusion_v1-5

civitai模型如何获取下载地址

huggingface模型如何获取下载地址

第一步:找到卡片页:files and versions

第二步:选择模型点进去

得到模型url地址就可以用:aria2c工具下载

例:

aria2c https://huggingface.co/andite/anything-v4.0/resolve/main/anything-v4.0-pruned-fp16.safetensors

lora层

这里有太多东西可以说,但是基本都是要自己准备数据训练模型来实现。比较考验技术底子,说白了就是你想让模型学习什么。

再记一句话吧,要做真正工业应用的产品,而不只是toy自己训练模型是必须的。并且利用好lora,可以把lora当成功能分层,效果分层类似计算成像的管线路子效果可以做到很震撼。

https://civitai.com/tag/lora

深度图层

https://github.com/thygate/stable-diffusion-webui-depthmap-script

对图片生成深度图层,可以用在3D或者AR、VR虚拟生成,元宇宙世界中使用。或者可以用在游戏引擎中做角色建模,也可以在3d打印时候使用。

场景环境控制(这块大家还未重视,做独立的场景生成模型)

室内场景

室外场景

光照控制

色系控制

prompt扩写润色

https://huggingface.co/spaces/blairoreilly/merve-chatgpt-prompts-bart-long

https://huggingface.co/spaces/awacke1/PromptRefinery

后效处理工具

图片角色背景融合

多物体融合渲染:https://github.com/Extraltodeus/multi-subject-render

利用深度图扩展,可以根据物体的深度距离创建多物体前景+背景做多物体融合。

多角色融合

https://www.cs.cmu.edu/~custom-diffusion/

其它工程思路:单独生成角色,然后把多个角色放上来,用outpaint方式来融合

https://github.com/zero01101/openOutpaint-webUI-extension

多物体融合渲染:https://github.com/Extraltodeus/multi-subject-render

利用深度图扩展,可以根据物体的深度距离创建多物体前景+背景做多物体融合。

光照调整

可以通过风格调整来实现,对同一种光照图片做**光照lora

位置调整

角色适合放在场景图片什么位置:可以考虑objectdetector对相似背景下物体放置位置预估,然后吧角色放置合适位置,做后续融合处理

多角色融合时候和场景图片如何做位置调整:可以考虑objectdetector对相似背景下物体放置位置预估,然后吧角色放置合适位置,做后续融合处理

超分

实现生成图片的尺寸放大,图片的高清晰度优化https://github.com/xinntao/ESRGAN

studio易用性工具

多语言插件

https://github.com/dtlnor/stable-diffusion-webui-localization-zh_CN

aria2内容下载工具

高速稳定下载文件:https://aria2.github.io/

提效工具

批量prompt效果展示,选择最佳prompthttps://github.com/dr413677671/PromptGallery-stable-diffusion-webui

多参数最有效果选择https://github.com/mcmonkeyprojects/sd-infinity-grid-generator-script

### 如何在 Postman 中实现和使用断言 #### 使用内置断言功能 Postman 提供了两种类型的断言方式:一是平台自带的断言脚本;二是依据特定测试需求编写的自定义断言脚本[^1]。对于初学者来说,利用 Postman 自带的断言选项是一个便捷的选择。这些预设好的断言可以直接用于验证响应状态码、时间、头部信息以及 JSON 或 XML 响应体中的字段。 #### 编写自定义断验脚本 为了满足更复杂的业务逻辑检验,在 `Tests` 标签页下可以编写 JavaScript 代码来进行详细的断言操作[^2]。下面给出一段简单的例子展示如何通过编程的方式设置断言: ```javascript pm.test("Status code is 200", function () { pm.response.to.have.status(200); }); // 验证返回数据中是否存在某个键值对 var jsonData = pm.response.json(); pm.test("Your test name", function () { pm.expect(jsonData).to.have.property('keyName'); }); ``` 这段代码首先检查 HTTP 请求的状态码是否为 200 表示成功请求,接着进一步确认服务器端返回的数据结构里含有预期的关键字 "keyName"。 #### 处理复杂场景下的断言 当面对较为复杂的测试情况时,比如需要遍历数组并对每一个元素做单独校验的情况,则可以通过组合使用循环语句和其他条件判断来完成更加精细的控制[^4]。例如针对 banner 列表为空与否及其内部项的具体属性进行多重层次上的核查: ```javascript const banners = pm.response.json().banners; if (Array.isArray(banners) && banners.length > 0){ for(let i=0; i<banners.length;i++){ let item = banners[i]; pm.test(`Banner ${i} has valid image`, ()=>{ pm.expect(item.image_url).to.be.a('string').and.not.empty; }); pm.test(`Banner ${i} link exists`, ()=>{ pm.expect(item.link).to.exist.and.is.a('string'); }); } }else{ console.log("No banners found"); } ``` 此段代码实现了对非空 banner 数组成员逐个检测其图像 URL 和链接的有效性的目的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值