CTR
远洋之帆
机器学习 人工智能 数学 数据可视化 机器人
展开
-
搜索系统一些思考——答案分层次
搜索系统是互联网应用的鼻祖,搜索、推荐、ctr、cvr都属于排序类算法范畴。解决的问题就是在有比较多答案都和用户要问的问题相关时候该怎么对这些信息排序,排序就一定会面临比较的基准是什么。要定义基准那就一定会问目标是什么,不同的目标下基准的标准肯定是不一样的。现在大部分的搜索和推荐的目的是商业目标——利益最大化,A.通过推荐给你更多付过费的商家信息,让付费的商家信息更多此的曝光从概率上讲曝光商家越多...原创 2020-03-19 11:06:10 · 352 阅读 · 0 评论 -
推荐系统的自我见解
对于推荐系统介绍的文章论文已经有不少,然后大家的关注点基本都是在具体一个点,较少看到有文章对推荐系统做比较全面且粒度比较细的描述文章。其实出现这样的情况也不难理解,推荐系统称之为系统也就可以看到它是由多部分共同构成,要全面且较细粒度的去描述清楚这样一个东西一定是需要足够的篇幅的,并且对于一个系统每家公司的实现还是千差万别的所以也不具参考性。然而差异性中总是有些共性的东西在的,比如推荐系统的流程、组...原创 2020-03-10 13:41:37 · 822 阅读 · 0 评论 -
排序算法(Learn to rank)的一些看法
回来自我隔离期,出不了小区加上倒春寒阴天;疯与快疯之间,重读了微软研究院Learn to Rank几篇经典论文,参考的看了CSDN上不少博主的观点。总觉得对于文章,有些思路上的点没有点透;尝试从排序更根本思路去讲解排序类算法为何如此、以及如此演进。思路:排序从冒泡法说起——打分、参考比较、决策冒泡排序时候每个容器中默认是一个数,所以没有从特征到打分这个步骤冒泡排序时候两个数据大小比...原创 2020-03-02 13:27:54 · 3705 阅读 · 4 评论 -
App广告之商业变现的实现策略
从事移动广告商业变现多年,总是觉得产品与商务的同事是一对“欢喜冤家”。站在开发者的角度,关注用户体验最优是无可厚非的,但“养家糊口”的问题关系着我们的生存。其实两者并没有那么根本地对立,只是缺乏一个统一的目标和相对协调的方法。本文大纲如下:01 概述02 广告交易模式03 参与者04 广告样式设计05 变现实验流程06 技术对接流程07 推广物料设计08 相...转载 2019-10-23 11:41:27 · 3024 阅读 · 0 评论 -
CTR发展史2016至今 深度学习的序幕
计算广告和推荐系统领域全面进入了深度学习时代,时至今日,深度学习CTR模型已经成为广告和推荐领域毫无疑问的主流。在进入深度学习时代之后,CTR模型不仅在表达能力、模型效果上有了质的提升,而且大量借鉴并融合了深度学习在图像、语音以及自然语言处理方向的成果,在模型结构上进行了快速的演化。本文总结了广告、推荐领域最为流行的10个深度学习CTR模型的结构特点,构建了它们之间的演化图谱。选择模型的标...原创 2019-10-14 18:13:20 · 414 阅读 · 0 评论 -
CTR模型演变史
CTR预估模型(以下简称CTR模型)的发展也可谓一日千里,从2010年之前千篇一律的逻辑回归(Logistic Regression,LR),进化到因子分解机(Factorization Machine,FM)、梯度提升树(Gradient Boosting Decision Tree,GBDT),再到2015年之后深度学习的百花齐放,各种模型架构层出不穷。我想所有从业者谈起深度学习CT...原创 2019-10-14 18:01:06 · 1924 阅读 · 0 评论