四柱汉诺塔

四柱汉诺塔


变体汉诺塔
问题描述:在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)
这时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1(证明见再议汉诺塔一);
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
第(3)步结束后任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。
数值不是很大,int完全可以搞定,代码如下:


#include<stdio.h>
#include<math.h>
#define M 99999999
int  main()
{
    int i,n,x,min,f[65];
    f[1]=1;
    f[2]=3;
    for(i=3;i<=65;i++)
    {
        min=M;
        for(x=1;x<i;x++)
            if(2*f[x]+pow(2,i-x)-1<min)
                min=2*f[x]+(int)pow(2,i-x)-1;
            f[i]=min;
    }
    while(~scanf("%d",&n))
        printf("%d\n",f[n]);
        return 0;
}
  • 10
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 离散数学中的四柱汉诺塔问题是一个经典的递归问题。在传统的三柱汉诺塔问题中,我们有三根柱子:起始柱(A),辅助柱(B)和目标柱(C)。而在四柱汉诺塔问题中,我们有四根柱子:起始柱(A),中间柱(B),辅助柱(C)和目标柱(D)。 找到四柱汉诺塔问题的k可以通过递归的方式来解决,具体的步骤如下: 1. 首先,我们需要明确的是在三柱汉诺塔问题中,我们将移动n个盘子需要进行2^n - 1次移动。在四柱汉诺塔问题中,我们需要进行k次移动。 2. 当n=1时,只有一个盘子需要移动。我们可以直接将它从起始柱A移动到目标柱D,完成第一次移动。 3. 当n>1时,我们可以将问题分解为多个子问题。每次将n个盘子分成两部分:第一部分由1个盘子组成,第二部分由n-1个盘子组成。我们需要进行k次移动。首先将n-1个盘子通过递归的方式从A柱移到C柱上,完成k次移动。然后,将第k次移动时的盘子从A柱移到D柱,完成第k次移动。再将n-1个盘子从C柱移回到A柱上,完成k次移动。最后将第k次移动时的盘子从D柱移到C柱上,完成最后一次移动。 4. 如此递归下去,直到n=1时,问题得以解决。 综上所述,我们可以通过递归的方式来解决四柱汉诺塔问题,并找到k次移动的方法。 ### 回答2: 离散数学中,四柱汉诺塔是一种将圆盘从一根柱子移动到另一根柱子的数学问题。在四柱汉诺塔中,我们有四根柱子,标记为A、B、C、D,以及n个不同大小的圆盘,初始状态下所有的圆盘都在柱子A上。 想要找到四柱汉诺塔的k,我们可以借助递归思想进行分析。假设目标是将n个圆盘从柱子A移动到柱子B上。首先,我们可以将这个问题简化为将n-1个圆盘从柱子A移动到柱子C上,同时保持柱子D为空柱子。 接下来,我们将n号圆盘从柱子A移动到柱子D上,以便为后续操作让出空间。然后,我们将n-1个圆盘从柱子C移动到柱子D上,同时保持柱子B为空柱子。 最后,我们将n号圆盘从柱子D移动到柱子B上。至此,我们成功将n个圆盘从柱子A移动到柱子B上。 通过以上的递归思想,我们可以找到四柱汉诺塔的k。具体步骤如下: 1. 当n=1时,直接将圆盘从柱子A移动到柱子B上,此时k=1。 2. 当n>1时,将n-1个圆盘从柱子A移动到柱子C上,同时保持柱子D为空柱子。此时,k为n-1个圆盘的汉诺塔问题的k。 3. 将n号圆盘从柱子A移动到柱子D上,此时k增加1。 4. 将n-1个圆盘从柱子C移动到柱子D上,同时保持柱子B为空柱子。此时,k为n-1个圆盘的汉诺塔问题的k。 5. 将n号圆盘从柱子D移动到柱子B上,此时k增加1。 根据以上的步骤,我们可以找到四柱汉诺塔的k。 ### 回答3: 离散数学中的四柱汉诺塔问题是指在四个柱子上将一堆盘子从柱子A移动到柱子D,其中每个盘子的大小都不同,且较大的盘子不能放在较小的盘子上面。要找到这个问题中的k,我们可以使用递归的方法来解决。 首先,我们需要理解汉诺塔问题的递推关系。对于n个盘子的汉诺塔问题,我们可以将其划分为两个子问题:将n-1个盘子从柱子A移动到柱子C,再将第n个盘子从柱子A移动到柱子D,最后将n-1个盘子从柱子C移动到柱子D。这里,我们可以将移动过程看作一个递归过程。 对于四柱汉诺塔问题,我们可以将其划分为三个子问题:将n-1个盘子从柱子A移动到柱子C,再将第n个盘子从柱子A移动到柱子D,最后将n-1个盘子从柱子C移动到柱子D。因此,我们可以得到递推公式如下: F(n) = 2F(n-1) + 1 其中,F(n)表示n个盘子的最少移动次数。通过这个递推公式,我们可以求解出每个n值对应的最少移动次数。 具体来说,我们可以使用循环来计算F(n)的值。当n等于1时,F(n)等于1;当n大于1时,使用循环从n-1开始递减计算F(n)的值,直到n递减至1为止。最后得到的F(n)即为所求的k。 总结起来,离散数学四柱汉诺塔问题中的k值可以通过递推关系 F(n) = 2F(n-1) + 1 计算得出,其中n为盘子的数量。通过循环计算可以求解出每个n值对应的最少移动次数,进而找到k值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值