Highly divisible triangular number
Problem 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
Answer:
| 76576500 |
代码:
#include<bits/stdc++.h>
using namespace std;
int Q(int n)
{
int c = 0;
int s = (int)sqrt(n);
for (int x = 1; x <= s; x++)
if (n%x == 0)
c++;
return 2*c;
}
int main()
{
int ans = 1, n = 2;
int factors = 1;
while (factors < 501)
{
ans += n;
n++;
factors = Q(ans);
}
cout<<ans<<endl;
return 0;
}