欧拉计划(12)Highly divisible triangular number


【题目】

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?

【翻译】

三角形数序列是由对自然数的连加构造而成的。所以第七个三角形数是1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. 那么三角形数序列中的前十个是:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

下面我们列出前七个三角形数的约数:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

可以看出28是第一个拥有超过5个约数的三角形数。

那么第一个拥有超过500个约数的三角形数是多少?

【思路】直接按照题意即可编码,难点在于如何加快计算约数个数的速度。

【代码】

//优化1: 优化计算约数的函数
int GetCount(int n)
{
	int count=0;
	int end=(int)sqrt(n);

	//仅需计算 [1,sqrt(n)],在前半区间有约数m,则在后半区间也有约数n/m
	//此时约数个数加2
	for(int i=1;i<end+1;i++)
	{
		if(n%i==0)
			count+=2;
	}
	//处理特殊情况
	if(end*end==n)
		count--;
	return count;
}
void test12_1()
{
	int answer=0;

	for(int  i=1;;i++)
	{
		answer+=i; //可以直接省去fun函数
		if( GetCount(answer) >=500)
			break;
	}
	cout<<answer<<endl;
}
【答案】运行程序,可得本题答案为: 76576500

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵卓不凡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值