问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
设dp[i][0]表示不选择i点时,i点及其子树能选出的最大权值。
dp[ i ][1]表示选择i点时,i点及其子树的最大权值。
所以,状态转移方程为:
对于叶子节点 i :
dp[ i ][0] = 0, dp[ i ][1] = K.(点权)
对于非叶子节点 i :
dp[ i ][1] = i点权值 + ∑dp[ j ][ 0 ] (j是i的儿子)
dp[ i ][0] = ∑max(dp[ j ][ 0 ], dp[ j ][1]) (j是i的儿子)
最后答案的最大权值即为max(dp[1][0], dp[1][1])。
代码:
#include<bits/stdc++.h>
using namespace std;
vector<int>G[100010];
int dp[100010][2];
void dfs(int cur,int fa)
{
for(int i=0;i < G[cur].size();i++){
int v = G[cur][i];
if(v == fa)continue;
dfs(v,cur);
dp[cur][1] += dp[v][0];
dp[cur][0] += max(dp[v][0],dp[v][1]);
}
}
int main()
{
//freopen("in.txt","r",stdin);
int n;
int u,v;
cin>>n;
for(int i=1;i<=n;i++){
cin>>dp[i][1];
}
for(int i=1;i<n;i++){
cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1,0);
cout<<max(dp[1][0],dp[1][1])<<endl;
return 0;
}