算法训练 结点选择 (树形dp)(点权)

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。


题解:树形dp。(点权)

设dp[i][0]表示不选择i点时,i点及其子树能选出的最大权值。

    dp[ i ][1]表示选择i点时,i点及其子树的最大权值。

所以,状态转移方程为:


对于叶子节点 i :

dp[ i ][0] = 0, dp[ i ][1] = K.(点权)


对于非叶子节点 i :

dp[ i ][1] = i点权值 + ∑dp[ j ][ 0 ] (j是i的儿子) 

dp[ i ][0] = ∑max(dp[ j ][ 0 ], dp[ j ][1]) (j是i的儿子)
最后答案的最大权值即为max(dp[1][0], dp[1][1])。


代码:

#include<bits/stdc++.h>
using namespace std;
vector<int>G[100010];
int dp[100010][2];
void dfs(int cur,int fa)
{
	for(int i=0;i < G[cur].size();i++){
		int v = G[cur][i];
		if(v == fa)continue;
		dfs(v,cur);
		dp[cur][1] += dp[v][0];
		dp[cur][0] += max(dp[v][0],dp[v][1]);
	}
}
int main()
{
	//freopen("in.txt","r",stdin);
	int n;
	int u,v;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>dp[i][1];
	}
	for(int i=1;i<n;i++){
		cin>>u>>v;
		G[u].push_back(v);
		G[v].push_back(u);
	}
	dfs(1,0);
	cout<<max(dp[1][0],dp[1][1])<<endl;
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值