蓝桥之节点选择(树状DP)

问题描述
    有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 1e5。
权值均为不超过1000的正整数

思路:

一开始想着就一个简单的二维数组去建树判断,但是提交上去发现运行错误,数组开太大,空间不够。

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1e5;
int a[maxn];
int vis[maxn];
int tree[maxn][maxn];
int n,max_,d,b,c;
void dp(int tot, int sum, int x)
{
    if(tot == 3)
    {
        if(max_ < sum)
            max_ = sum;
        return ;
    }
    for(int j=1; j<=n; j++)
    {
        if(x != j && tree[x][j] != 1 && !vis[j])
        {
            vis[j] = 1;
            dp(tot+1,sum+a[j],j);
            vis[j] = 0;
        }
    }
}
int main()
{
    while(cin >> n)
    {
        max_ = 0;
        for(int i=0; i<=n; i++)
            memset(tree[i], 0 , n);
        for(int i=1; i<=n; i++)
        {
            cin >> a[i];
        }
        for(int i=0; i<n-1; i++)
        {
            int l,r;
            cin >> l >> r;
            tree[l][r] = tree[r][l] = 1;
        }
        for(int i=1; i<=n; i++)
        {
            memset(vis, 0 , sizeof vis);
            vis[i] = 1;
            dp(1,a[i],i);
        }
        cout << max_ << endl;
    }
    return 0;
}

参考了一下网上的:
采用《孩子表示法》的树状存储,不用二维,而用结构体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值