LOj 2000「SDOI2017」数字表格 (莫比乌斯反演)

题目链接:
LOj 2000

题意:
给你 n m
让你求 ans(n,m)=ni=1mj=1fib[gcd(i,j)]

题解:

因为要求: ans(n,m)=ni=1mj=1fib[gcd(i,j)]
枚举 k=gcd(i,j) ,得:

ans(n,m)=min(n,m)k=1fib[k]nki=1mkj=1[gcd(i,j)=1]

其中 [gcd(i,j)=1] 表示若 gcd(i,j)=1 ,该式值为 1 ,否则为0
利用莫比乌斯函数的性质,得到:

ans(n,m)=min(n,m)k=1fib[k]nki=1mkj=1d|gcd(i,j)μ(d)

对每个 d 统计μ(d)被算了几次,则:

ans(n,m)=min(n,m)k=1fib[k]min(n,m)kd=1nkdmkdμ(d)

如果我们直接算这个,复杂度是 O((n+m)34) 。会TLE。但也会有60分吧。
我们可以令 p=kd ,则:

ans(n,m)=min(n,m)p=1k|pfib[k]npmpμ(pk)

=min(n,m)p=1(k|pfib[k]μ(pk))npmp

(如果做得多了,其实可以直接推出上式,都是套路了。)
g(x)=k|pfib[k]μ(pk) ,可以通过枚举 d ,对于每个满足k|p g(p) 都乘上 fib[k]μ(pk) ,只需提前预处理 μ(x) fib(x) fib(x) 的逆元即可。
可以发现,发现对于每个 p k|pfib[k]μ(pk) 的值是固定的,而与 n m无关,于是我们先用筛法预处理出每个 p 对应的这个式子的值,前缀积一下,利用npmp 只有 O(n+m) 种取值。我们可以在 O((n+m)log(mod)) 时间内计算并回答每次询问(其中 log(mod) 为快速幂),总的时间负责度就是 O((max(n,m)+T(n+m))log(mod))

注意:

快速幂求答案的时候指数模一下 mod1 。因为 a(p1)=1(mod p)  p p 是质数,所以所有的指数是对(p1)取模的。如果这个点不注意,100分会卡成30分…

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1000010;
const int mod = 1e9+7; 
int tot=0;
int check[N],mu[N],fib[N];
int prime[N];
int inv[N];
int g[N],f[N];
ll q_mod(ll a,ll b)
{
    ll res = 1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return res;
}
void mobius()
{
    mu[1]=1;
    int n=1000005;
    for(int i=2;i<=n;i++)
    {
        if(!check[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=tot&&i*prime[j]<=n;j++)
        {
            check[i*prime[j]]=1;
            if(!(i%prime[j]))
            {   
                mu[i*prime[j]]=0;
                break;
            }
            else mu[i*prime[j]]=-mu[i];
        }
    }


    for(int i=0;i<=n;i++){
        f[i]=g[i]=1;
    }
    fib[0]=0; fib[1]=1;
    for(int i=2;i<=n;i++)
    {
        fib[i]=fib[i-1]+fib[i-2];
        if(fib[i]>=mod) fib[i]-=mod;
    }

    for(int i=2;i<=n;i++){
        inv[i]=q_mod(fib[i],mod-2);
    }
    for(int i=3;i<=n;i++)
    {
        for(int j=i,k=1;j<=n;j+=i,k++)
        {
            if(mu[k]==1)
            {
                f[ j ] = 1LL * f[ j ] * fib[ i ] % mod;
                g[ j ] = 1LL * g[ j ] * inv[ i ] % mod;
            }
            else if(mu[k]==-1)
            {
                f[ j ] = 1LL * f[ j ] * inv[ i ] % mod;
                g[ j ] = 1LL * g[ j ] * fib[ i ] % mod;
            }
        }
    }
    for(int i=2;i<=n;i++){
        f[i] = 1LL * f[i] * f[i-1] % mod;
        g[i] = 1LL * g[i] * g[i-1] % mod;
    }
}
int t,n,m;
int solve()
{
    int ans = 1 ;
    for(int pos,i=1;i<=n;i=pos+1)
    {
        pos = min(n/(n/i),m/(m/i));
        ans = 1LL * ans * q_mod( 1LL * f[pos] * g[i-1] % mod,1LL * (n/i) * (m/i) % (mod-1)) % mod;
    }
    //cout<<"ans="<<ans<<endl; 
    return ans;
}

int main()
{
//  freopen("product5.in","r",stdin);
    mobius();
//  cout<<"init finish"<<endl;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        if(n>m)swap(n,m);
        int ans = solve();
        printf("%d\n",ans);
    }
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值