jzoj 4019. 【雅礼联考DAY02】Path dp

Description

给定一个 n∗ m 的网格,你在左下角 (n,1),你只能往前走或者右拐,障碍和走过的点不能走。求走到 (y,x) 的方案数 mod k 的值。

Input

第一行输入 n,m,k (n,m ≤ 100,k ≤ 10^9 )。第二行输入 x,y,意这里是x 列 y 行,以下 n 行 m 行的字符矩阵 + 表示可以走, * 表示障碍。

Output

输出一个数,表示方案数 mod k 的值。

Sample Input

3 5 10
4 2
+++++
++*++
++++*

Data Constraint

n,m ≤ 100,k ≤ 10^9.

分析:
好神奇的一道题。
f[p][i][j][k][l] f [ p ] [ i ] [ j ] [ k ] [ l ] 为左上角为 (i,j) ( i , j ) ,右下角为 (k,l) ( k , l ) ,不走出这个矩阵,方向为p的方案数。

p=0 p = 0 ,则是以左上角为起点,右方向为正方向;若 p=1 p = 1 ,则以右上角为起点,下方向为正方向;若 p=2 p = 2 ,则以右下角为起点,左方向为正方向;若 p=3 p = 3 ,则以左下角角为起点,上方向为正方向。

这里写图片描述

左图为从 p=0 p = 0 方向开始的一种走法。

先无视障碍,考虑转移:
如右图,显然我们可以在蓝色区域的任意一点右转,方案数即为下面橙色区域的方案数。因为我们要求不走出矩形,所以在第一个位置右转的矩形为 (x1+1,y1,x2,y1) ( x 1 + 1 , y 1 , x 2 , y 1 ) ,最右边的矩形为 (x1+1,y1,x2,y2) ( x 1 + 1 , y 1 , x 2 , y 2 ) 。而我们右转后相当于以方向 p=1 p = 1 (右上角下方向)进入橙色矩阵。

即有,

f[0][i][j][k][l]=t=jlf[1][i+1][j][k][t] f [ 0 ] [ i ] [ j ] [ k ] [ l ] = ∑ t = j l f [ 1 ] [ i + 1 ] [ j ] [ k ] [ t ]

这样的复杂度为 O(n5) O ( n 5 ) 。显然不行。

然后我们发现这样太暴力了,没有利用好所有的状态。

我们发现 f[0][i][j][k][l1]=l1t=jf[1][i+1][j][k][t] f [ 0 ] [ i ] [ j ] [ k ] [ l − 1 ] = ∑ t = j l − 1 f [ 1 ] [ i + 1 ] [ j ] [ k ] [ t ] ,只需要在他的基础上加上 f[1][i+1][j][k][l] f [ 1 ] [ i + 1 ] [ j ] [ k ] [ l ] 即可转移,不需要枚举 t t

即,

f[0][i][j][k][l]=f[0][i][j][k][l1]+f[1][i+1][j][k][l]

对于其他3个方向同样推导。

时间复杂度变为 O(n4) O ( n 4 ) ,但是空间上还是达到了 O(n4) O ( n 4 )

我们发现,每次的状态转移都是从少一行或少一列的矩阵转移过来的,所以可以设一维状态为行和列的和,状态变为, f[p][d][i][j][k] f [ p ] [ d ] [ i ] [ j ] [ k ] 表示方向为 p p ,行和列的长度和为d,左上角为 (i,j) ( i , j ) ,右下角为 (k,d+i+jk) ( k , d + i + j − k ) 的方案数。然后 d d 这一维就可以滚动了。

至于有障碍,那就要保证在转弯前走的那段路上没有障碍,即dp式要在满足(i,j) (i,l) ( i , l ) 没有障碍,否则 f[1][i+1][j][k][l] f [ 1 ] [ i + 1 ] [ j ] [ k ] [ l ] 就没有贡献。

对于 p=0 p = 0 来说,我们计算时要判断 (i,l) ( i , l ) 是不是终点,是就+1就可以了。

时间复杂度为 O(n4) O ( n 4 ) ,空间复杂度为 O(n3) O ( n 3 )

代码:

#include <iostream>
#include <cstdio>
#include <cmath>

const int maxn=101;

using namespace std;

int n,m,x,y;
int f[2][maxn][maxn][maxn][4];
int p;
int lef[maxn][maxn],up[maxn][maxn];

int gett()
{
    int c;
    while(c=getchar(), c<=32);
    return c=='*';
}

void init()
{
    char s[107],ch;
    scanf("%d%d%d\n",&n,&m,&p);
    scanf("%d%d\n",&y,&x);
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=m;j++)
        {
            int c=gett();
            lef[i][j]=lef[i][j-1]+c;
            up[i][j]=up[i-1][j]+c;
        }
    }   
}

int main()
{
    init();         
    int g=0;    
    for (int d=0;d<=n+m-2;d++)
    {       
        for (int i=x;(i>0) && (x-i)<=d;i--)
        {
            for (int j=y;(j>0) && ((x-i)+(y-j)<=d);j--)
            {
                for (int k=x;(k<=n) && ((k-i)+(y-j)<=d);k++)
                {                   
                    int l=d+i+j-k;
                    if (l>m) continue;
                    f[g^1][i][j][k][0]=f[g][i][j][k][0]+(lef[i][l]==lef[i][j-1])*f[g][i+1][j][k][1];
                    f[g^1][i][j][k][1]=f[g][i][j][k-1][1]+(up[k][l]==up[i-1][l])*f[g][i][j][k][2];
                    f[g^1][i][j][k][2]=f[g][i][j+1][k][2]+(lef[k][l]==lef[k][j-1])*f[g][i][j][k-1][3];
                    f[g^1][i][j][k][3]=f[g][i+1][j][k][3]+(up[k][j]==up[i-1][j])*f[g][i][j+1][k][0]; 
                    f[g^1][i][j][k][0]+=((i==x) && (l==y) && (lef[i][l]==lef[i][j-1]));
                    f[g^1][i][j][k][1]+=((k==x) && (l==y) && (up[k][l]==up[i-1][l]));
                    f[g^1][i][j][k][2]+=((k==x) && (j==y) && (lef[k][l]==lef[k][j-1]));
                    f[g^1][i][j][k][3]+=((i==x) && (j==y) && (up[k][j]==up[i-1][j]));
                    for (int r=0;r<4;r++)
                    {
                        f[g^1][i][j][k][r]%=p;
                    }
                }
            }
        }
        g^=1;
    }
    printf("%d",f[g][1][1][n][3]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值