bzoj 4002: [JLOI2015]有意义的字符串 数论+矩阵乘法

题目大意:
给出 b , d , n b,d,n b,d,n,求
( b + d 2 ) n (\frac{b+\sqrt{d}}{2})^n (2b+d )n
其中,
在这里插入图片描述

分析:
对于一个数列 a n a_n an,满足
a n = p a n − 1 + q a n − 2 a_n=pa_{n-1}+qa_{n-2} an=pan1+qan2
则有
a n + μ a n − 1 = ( p + μ ) ( a n − 1 + μ a n − 2 ) a_n+\mu a_{n-1}=(p+\mu)(a_{n-1}+\mu a_{n-2}) an+μan1=(p+μ)(an1+μan2)
那么就是一个等比数列,其中公比是 p + μ p+\mu p+μ
而本题中 p + μ = b + d 2 p+\mu=\frac{b+\sqrt{d}}{2} p+μ=2b+d ,解出 p = b p=b p=b q = d − b 2 4 q=\frac{d-b^2}{4} q=4db2
进一步得到
a 0 = 2 a_0=2 a0=2 a 1 = b a_1=b a1=b,通项满足
a n = ( b + d 2 ) n + ( b − d 2 ) n a_n=(\frac{b+\sqrt{d}}{2})^n+(\frac{b-\sqrt{d}}{2})^n an=(2b+d )n+(2bd )n
( b + d 2 ) n = a n − ( b − d 2 ) n (\frac{b+\sqrt{d}}{2})^n=a_n-(\frac{b-\sqrt{d}}{2})^n (2b+d )n=an(2bd )n
( b − d 2 ) ∈ ( − 1 , 0 ] (\frac{b-\sqrt{d}}{2})\in(-1,0] (2bd )(1,0],所以 ( b − d 2 ) n ∈ ( − 1 , 1 ) (\frac{b-\sqrt{d}}{2})^n\in(-1,1) (2bd )n(1,1)
所以只有当 ( b − d 2 ) n > 1 (\frac{b-\sqrt{d}}{2})^n>1 (2bd )n>1时,答案要减小1。

代码:

/**************************************************************
    Problem: 4002
    User: ypxrain
    Language: C++
    Result: Accepted
    Time:56 ms
    Memory:1292 kb
****************************************************************/
 
#include <iostream>
#include <cstdio>
#include <cmath>
#define LL unsigned long long
 
const LL mod=7528443412579576937;
 
using namespace std;
 
LL b,d,n,ans;
 
struct rec{
    LL a[2][2];
}A,B;
 
LL mul(LL x,LL y)
{
    LL tmp=0;
    for (;y;y>>=1)
    {
        if (y&1) tmp=(tmp+x)%mod;
        x=(x+x)%mod;
    }
    return tmp;
}
 
rec operator *(rec a,rec b)
{
    rec c;
    for (int i=0;i<2;i++)
    {
        for (int j=0;j<2;j++) c.a[i][j]=0;
    }
    for (int k=0;k<2;k++)
    {
        for (int i=0;i<2;i++)
        {
            for (int j=0;j<2;j++)
            {
                c.a[i][j]=(c.a[i][j]+mul(a.a[i][k],b.a[k][j]))%mod;
            }
        }
    }
    return c;
}
 
void power(LL n)
{
    for (;n;n>>=1)
    {
        if (n&1) B=B*A;
        A=A*A;
    }
}
 
int main()
{
    scanf("%lld%lld%lld",&b,&d,&n);     
    A.a[0][0]=0,A.a[0][1]=(d-b*b)/4,A.a[1][0]=1,A.a[1][1]=b;
    B.a[0][0]=1,B.a[1][1]=1;
    power(n);       
    ans=(mul(B.a[0][0],2)+mul(B.a[1][0],b))%mod;
    if ((b*b!=d) && (n%2==0)) ans=(ans+mod-1)%mod;
    printf("%lld\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值