jzoj 6044.【NOI2019模拟2019.3.7】联邦 fwt

Description
在这里插入图片描述
Input
在这里插入图片描述
Output
在这里插入图片描述
Sample Input
3
2 3
4

Sample Output
50

Data Constraint
在这里插入图片描述
分析:
题目其实是求任意连通图,价值是边权的积,求价值和。
考虑无向图计数的方式。我们设 f [ s ] f[s] f[s]表示点集为 s s s连通的无向图的价值和, g [ s ] g[s] g[s]表示点集为 s s s任意无向图价值和。
那么有
f [ s ] = g [ s ] − ∑ s u b ∈ s , p ∈ s , p ∈ s u b f [ s u b ] ∗ g [ s   x o r   s u b ] f[s]=g[s]-\sum_{sub\in s,p\in s,p\in sub}f[sub]*g[s\ xor\ sub] f[s]=g[s]subs,ps,psubf[sub]g[s xor sub]
然后后面就是一个子集卷积,考虑怎样保证关键点的问题。
我们考虑对 s s s内的所有点都当成关键点进行计算,那么最后除以 ∣ s ∣ |s| s即可。
一个 f [ s u b ] f[sub] f[sub]显然贡献了 ∣ s u b ∣ |sub| sub次,式子可以写成,
f [ s ] = g [ s ] − 1 ∣ s ∣ ∑ s u b ∈ s ∣ s u b ∣ ∗ f [ s u b ] ∗ g [ s   x o r   s u b ] f[s]=g[s]-\frac{1}{|s|}\sum_{sub\in s}|sub|*f[sub]*g[s\ xor\ sub] f[s]=g[s]s1subssubf[sub]g[s xor sub]
两边同时乘上 ∣ s ∣ |s| s,得到
∣ s ∣ f [ s ] = ∣ s ∣ ∗ g [ s ] − ∑ s u b ∈ s ∣ s u b ∣ ∗ f [ s u b ] ∗ g [ s   x o r   s u b ] |s|f[s]=|s|*g[s]-\sum_{sub\in s}|sub|*f[sub]*g[s\ xor\ sub] sf[s]=sg[s]subssubf[sub]g[s xor sub]
我们设 F [ s ] = ∣ s ∣ ∗ f [ s ] F[s]=|s|*f[s] F[s]=sf[s],这时就是裸的子集卷积了,最后除 n n n即可。

代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#define LL long long

const int maxn=21;
const int maxs=1048580;
const LL mod=1e9+7;

using namespace std;

int n,m;
int c[maxn][maxn],bit[maxn],numbit[maxs],lg[maxs];
int f[maxn][maxs],g[maxn][maxs],a[maxs];

int ksm(int x,int y)
{
    if (y==0) return 1;
    int c=ksm(x,y/2);
    c=((LL)c*(LL)c)%mod;
    if (y&1) c=((LL)c*(LL)x)%mod;
    return c;
}

int add(int x,int y)
{
	x+=y;
	if (x>=mod) x-=mod;
	return x;
}

void fwt(int *a,int l,int r)
{
    if (l==r) return;
    int len=(r-l+1)/2,mid=l+len;
    fwt(a,l,mid-1);
    fwt(a,mid,r);
    for (int i=l;i<mid;i++) a[i+len]=add(a[i+len],a[i]);
}

void dwt(int *a,int l,int r)
{
    if (l==r) return;
    int len=(r-l+1)/2,mid=l+len;
    dwt(a,l,mid-1);
    dwt(a,mid,r);
    for (int i=l;i<mid;i++) a[i+len]=add(a[i+len],mod-a[i]);
}

int main()
{
	freopen("union.in","r",stdin);
	freopen("union.out","w",stdout);
	scanf("%d",&n);
	bit[0]=1;
	for (int i=1;i<=n;i++)
	{
		bit[i]=bit[i-1]*2;
		lg[bit[i]]=i;
	}
	for (int i=1;i<=n;i++)
	{
		for (int j=1;j<=n-i;j++)
		{
			scanf("%d",&c[i][i+j]);
			c[i+j][i]=c[i][i+j];
		}
    }    
    a[0]=1;
    for (int s=1;s<bit[n];s++)
    {
        numbit[s]=numbit[s-(s&(-s))]+1;
        a[s]=a[s-(s&(-s))];
        int k=lg[s&(-s)]+1;
        for (int i=1;i<=n;i++)
        {
        	if (s&bit[i-1])
        	{
        		a[s]=((LL)a[s]*((LL)c[i][k]+1))%mod;
        	}
        }
        g[numbit[s]][s]=a[s];
    }
    for (int i=1;i<=n;i++) fwt(g[i],0,bit[n]-1);
    for (int i=1;i<=n;i++) f[1][bit[i-1]]=1;
    for (int i=2;i<=n;i++)
    {	
        fwt(f[i-1],0,bit[n]-1);
        for (int j=1;j<i;j++)
        {
            for (int s=0;s<bit[n];s++) f[i][s]=add(f[i][s],(LL)f[j][s]*(LL)g[i-j][s]%mod);
        }
        dwt(f[i],0,bit[n]-1);
        for (int s=0;s<bit[n];s++)
        {
            if (numbit[s]!=i) f[i][s]=0;
                         else f[i][s]=add((LL)a[s]*(LL)numbit[s]%mod,mod-f[i][s]);
        }
    }
	printf("%lld",(LL)f[n][bit[n]-1]*(LL)ksm(n,mod-2)%mod);
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值