洛谷 P3247 [HNOI2016]最小公倍数 分块+并查集

题目大意:
给定一个 n n n个点, m m m条边无向图。一个四元组 ( u , v , a , b ) (u,v,a,b) (u,v,a,b)代表一条从 u u u v v v的属性为 ( a , b ) (a,b) (a,b)无向边。
q q q组询问,一个四元组 ( u , v , A , B ) (u,v,A,B) (u,v,A,B)代表询问是否存在一条 u u u v v v的路径(不一定要是简单路径),使得 m a x ( a ) = A max(a)=A max(a)=A m a x ( a ) = B max(a)=B max(a)=B
n , q ≤ 5 ∗ 1 0 4 , m ≤ 1 0 5 , a , b ≤ 1 0 9 n,q≤5*10^4,m≤10^5,a,b≤10^9 n,q5104,m105,a,b109

分析:
显然对于每一个询问,只有 a ≤ A a≤A aA b ≤ B b≤B bB的边有用。

可以使用并查集进行维护求解。具体的,如果 u u u v v v在同一集合,直接看 a a a, b b b是否可以更新集合的两个最大值。
显然只要连通,必定存在一条路径经过 a a a最大的边和 b b b最大的边。
如果不连通,那么连上后一样处理。

考虑对 a a a值域分块,这里要使用离散化,具体是先对第一维排序,然后对下标分块。
然后对于每一块我们处理第一维在 [ a [ i ] , a [ i + s i z e ] ) [a[i],a[i+size]) [a[i],a[i+size])范围内的询问,其中 i i i是某块左边界。
把这些询问按 b b b排序,这里的处理有点类似于莫队。
显然 a [ 1 ] a[1] a[1]~ a [ i − 1 ] a[i-1] a[i1]的边都是第一维满足的,直接对第二维排序,以为 b b b也是有序的,可以使用指针进行插入。
然后枚举 a [ i ] a[i] a[i]~ a [ i + s i z e − 1 ] a[i+size-1] a[i+size1]的边,这些边只有 m \sqrt m m 条,直接暴力处理,然后撤回这些操作。只需要记录每次操作改变的东西,使用启发式合并即可。
这里有点类似于回滚处理,先把右边界移动到询问边界,把左边界设置在块的最右端,再进行左边界移动,完成询问后左边界恢复,右边界不变。这样保证每次操作都是合并操作,撤回操作也是按插入顺序依次撤回。

代码:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>

const int maxn=1e5+7;

using namespace std;

int n,m,T,la,ra,lb,rb,A,B,cnt,top,block;
int ans[maxn];

struct data{
    int u,v,a,b,num;
}a[maxn],c[maxn],q[maxn],h[maxn];

struct node{
    int fa,size,maxa,maxb;
}p[maxn];

bool cmpa(data a,data b)
{
    return a.a<b.a;
}

bool cmpb(data a,data b)
{
    return a.b<b.b;
}

int find(int x)
{
    if (!p[x].fa) return x;
    return find(p[x].fa);
}

void uni(int u,int v,int a,int b)
{
    u=find(u),v=find(v);
    if (p[u].size>p[v].size) swap(u,v);
    h[++top]=(data){u,v,p[v].maxa,p[v].maxb};
    if (u==v)
    {
        p[v].maxa=max(p[v].maxa,a);
        p[v].maxb=max(p[v].maxb,b);
        return;
    }
    p[u].fa=v;
    p[v].size+=p[u].size;
    p[v].maxa=max(max(p[v].maxa,a),p[u].maxa);
    p[v].maxb=max(max(p[v].maxb,b),p[u].maxb);
}

void del(int num)
{
    int u=h[num].u,v=h[num].v,a=h[num].a,b=h[num].b;
    if (u==v)
    {
        p[v].maxa=a;
        p[v].maxb=b;
        return;
    }
    else
    {
        p[u].fa=0;
        p[v].size-=p[u].size;
        p[v].maxa=a;
        p[v].maxb=b;
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d%d",&a[i].u,&a[i].v,&a[i].a,&a[i].b);
    }
    sort(a+1,a+m+1,cmpa);
    scanf("%d",&T);
    for (int i=1;i<=T;i++)
    {
        scanf("%d%d%d%d",&q[i].u,&q[i].v,&q[i].a,&q[i].b);
        q[i].num=i;
    }	
    sort(q+1,q+T+1,cmpb);
    block=trunc(sqrt(m))+1;
    for (int i=1;i<=m;i+=block)
    {
        cnt=0;
        for (int j=1;j<=T;j++)
        {
            if ((q[j].a>=a[i].a) && ((i+block>m) || (q[j].a<a[i+block].a)))
            {
                c[++cnt]=q[j];
            }
        }
        sort(a+1,a+i,cmpb);
        for (int j=1;j<=n;j++) p[j]=(node){0,1,-1,-1};
        int now=1;
        for (int j=1;j<=cnt;j++)
        {
            while ((now<i) && (a[now].b<=c[j].b))
            {
                uni(a[now].u,a[now].v,a[now].a,a[now].b);
                now++;
            }
            top=0;
            for (int k=i;(k<=m) && (k<i+block);k++)
            {
                if ((a[k].a<=c[j].a) && (a[k].b<=c[j].b))
                {
                	uni(a[k].u,a[k].v,a[k].a,a[k].b);
                }
            }
            int cu=find(c[j].u),cv=find(c[j].v);
            ans[c[j].num]=((cu==cv) && (p[cu].maxa==c[j].a) && (p[cu].maxb==c[j].b));
            while (top)
            {
            	del(top);
            	top--;
            }
        }
    }
    for (int i=1;i<=T;i++)
    {
        if (ans[i]) printf("Yes\n");
               else printf("No\n");
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值