题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
题目给定一个三角形,求和最小的路径。要求在三角形的层中,相邻层所取的整数是相邻的。即:在题目给出的例子中,如果第三层取5,那么第四层只能取1或8。
用动态规划来解,f[i][k]表示到第i层的第k个顶点的最小路径长度,则状态转移方程:
f[i][j]= min{f(i-1,k), f(i-1,k-1)} + triangle(i, k);
triangle(i, k)表示三角阵中第i行第k个元素。
可以求得到达三角阵中最后一行所有元素的最短路径,再从中比较得出一个最短路径。Accepted 的代码:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<vector<int> > f;
//初始化
for(int i=0;i<triangle.size();i++)
{
vector<int> temp;
for(int j=0;j<triangle[i].size();j++)
{
temp.push_back(0);
}
f.push_back(temp);
}
//动态规划过程
if(triangle.size()==0) return 0;
f[0][0]=triangle[0][0];
if(triangle.size()==1) return f[0][0];
f[1][0]=triangle[0][0]+triangle[1][0];
f[1][1]=triangle[0][0]+triangle[1][1];
for(int i=2;i<triangle.size();i++)
{
f[i][0]=f[i-1][0]+triangle[i][0];
for(int j=1;j<triangle[i].size()-1;j++)
{
if(f[i-1][j-1]<f[i-1][j])
f[i][j]=f[i-1][j-1]+triangle[i][j];
else
f[i][j]=f[i-1][j]+triangle[i][j];
}
f[i][triangle[i].size()-1]=f[i-1][triangle[i].size()-2]+triangle[i][triangle[i].size()-1];
}
//找出最小的结果
int result=f[triangle.size()-1][0];
for(int i=1;i<triangle.size();i++)
{
if(f[triangle.size()-1][i]<result) result=f[triangle.size()-1][i];
}
return result;
}
};
算法的时间复杂度为o(n^2),n为三角阵的行数。