力扣108提将有序数组转换为二叉搜索树
- 近一年都比较关注算法相关的知识,也刷了不少题,之前的文章中大多也是算法相关的文章,但是感觉每次遇到树相关的题型都不能应对自如,因此还是有必要在相关知识上下功夫,因此有此次总结,以下是所有树相关的文章
原题:
- 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
- 如下图所示:
解析
- 如上题意,高度平衡二叉查找树,并且高度差不超过1,这正好符合AVL树的定义
- AVL(Adelson-Velskii 和landis)树是带有平衡条件的二叉查找树,这个平衡条件必须容易实现,并且保证树的深度必须是O(logN)。因此我们让一棵AVL树中每个节点的左子树和右子树的高度最多相差1(空树高度定义-1)如下图,左边是AVL树,右边不是AVL树。
-
对AVl树的构建实现以及原理在之前的文章 数据结构与算法–面试必问AVL树原理及实现 有做详细的分析
-
算法分析如下:
- 关键点一 升序 排列 的数组
- 关键点二,AVL树(左子树小于根,右子树大于根,高度差小于1)
- 根据如上两个关键信息,要得到一颗AVL树,我们需要根的左右子树节点一样,或者相差1
- 根据AVL树的特性,左小右大,那么我们选取数组第中间大的数据作为根节点
- 因为是升序排序,那么0~length/2 就是左子树,length/2 +1 ~ length就是右子树
- 同样的道理,对应左子树中也可以同样看成是一颗AVL树,对于右子树同样看成hi一颗AVL树,得出一个递归的构建过程
算法实现
/**
* 有序数组转换为高度平衡二叉搜索树(AVL树)
* @author liaojiamin
* @Date:Created in 16:34 2022/2/21
*/
public class SortArrayToAvlTree {
public static void main(String[] args) {
int[] arr = new int[20];
Random random = new Random();
for (int i = 0; i < 20; i++) {
if(i == 0){
arr[i] = random.nextInt(30);
}else {
arr[i] = random.nextInt(30) + arr[i-1];
}
System.out.print(arr[i] + ",");
}
System.out.println();
BinaryNode avlTree = sortArrayToAVL(arr);
printTreeMiddle(avlTree);
}
/**
* 中序遍历
* */
public static void printTreeMiddle(BinaryNode binaryNode){
if(binaryNode == null){
return;
}
printTreeMiddle(binaryNode.getLeft());
System.out.println(binaryNode.getElement());
printTreeMiddle(binaryNode.getRight());
}
/**
* 有序数组递归构建AVL树
* */
public static BinaryNode sortArrayToAVL(int[] arr){
if(arr == null || arr.length == 0){
return null;
}
if(arr.length == 1){
return new BinaryNode(arr[0], null, null);
}
BinaryNode leftNode = sortArrayToAVL(Arrays.copyOfRange(arr, 0, (arr.length/2)));
BinaryNode rightNode = sortArrayToAVL(Arrays.copyOfRange(arr, (arr.length/2)+1,arr.length));
BinaryNode rootNode = new BinaryNode(arr[arr.length/2], leftNode, rightNode);
return rootNode;
}
}