flink 1.10.1 java版本redis sink写入处理结果到redis

该博客介绍了如何在Flink1.10.1的Java版本WordCount基础上,将结果输出到Redis。通过添加Flink Redis连接器依赖,配置RedisSink,并自定义RedisMapper实现数据写入。测试代码展示了数据流处理、转换和汇总,最后将统计结果发送到Redis。
摘要由CSDN通过智能技术生成

本文的基础环境可以参考flink 1.10.1 java版本wordcount演示 (nc + socket),在此基础上增加输出结果到redis。

1. 添加依赖

<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>

2. 编写测试代码

package com.demo.redis;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;
import org.apache.flink.util.Collector;

/**
 * flink结果写入redis
 */
public class FlinkRedisDemo {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        DataStream<String> dataStream = env.socketTextStream("192.168.0.181",9000);

        SingleOutputStreamOperator<String> flatMap = dataStream.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String value, Collector<String> out) throws Exception {
                String[] strings = value.split(" ");
                for (String s : strings) {
                    out.collect(s);
                }
            }
        });
        SingleOutputStreamOperator<Tuple2<String, Integer>> map = flatMap.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = map.keyBy("f0").sum(1);


        FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
                .setHost("localhost")
                .setPort(6379)
                .build();

        RedisSink<Tuple2<String, Integer>> redisSink = new RedisSink<Tuple2<String, Integer>>(config,
                new MyRedisMapper());

        sum.addSink(redisSink);

        sum.print();

        env.execute();

    }

    // 自定义redis操作命令
    public static class MyRedisMapper implements RedisMapper<Tuple2<String, Integer>>
    {
        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.HSET, "statis-test");
        }

        @Override
        public String getKeyFromData(Tuple2<String, Integer> data) {
            return data.f0;
        }

        @Override
        public String getValueFromData(Tuple2<String, Integer> data) {
            return data.f1.toString();
        }
    }
}

sum.addSink(redisSink)是将sum流结果输出到redis。

其中MyRedisMapper定义了redis写入的方式。

3. 查看输出结果

nc输入信息:

控制台输出:

redis查看写入信息:

在Apache Flink 1.17版本中,要将数据流写入Redis,你需要使用Flink的连接器API——DataStream API。首先,确保已经添加了Flink Redis connector的依赖。以下是基本步骤: 1. 添加依赖:如果你使用的是Maven,添加以下依赖到pom.xml文件中: ```xml <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>${flink.version}</version> </dependency> ``` 替换`${flink.version}`为实际的Flink版本。 2. 创建RedisSinkFunction: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.connectors.redis.RedisConnectionConfig; import org.apache.flink.streaming.connectors.redis.RedisSink; import org.apache.flink.streaming.connectors.redis.RedisSinkFunction; public class RedisDataWriter implements RedisSinkFunction<String> { private static final String KEY_FORMAT = "%s"; @Override public void invoke(String value, Context context) throws Exception { String key = String.format(KEY_FORMAT, generateKey(value)); // 生成Redis键 context.getCheckpointedStateContext().getStateBackend().getRedisStateBackend() .put(key, new SimpleStringSchema().toBytes(value)); } // 根据实际业务定制key生成逻辑 protected String generateKey(String value) { return value; // 示例:这里只是一个简单的字符串拼接,你可以替换为复杂逻辑 } // 初始化配置 @Override public void open(Configuration parameters) throws Exception { super.open(parameters); RedisConnectionConfig connectionConfig = new RedisConnectionConfig.Builder() .setHost("localhost") // 设置Redis服务器地址 .setPort(6379) // 设置端口 .build(); this.setConnectionConfig(connectionConfig); } } ``` 3. 在StreamExecutionEnvironment中设置和应用Sink: ```java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<String> input = ... // 获取输入数据流 input.addSink(new RedisDataWriter()); // 将数据流写入Redis env.execute("Write to Redis"); // 启动流处理任务 ``` 4. 确保Redis服务器正在运行并且接收Flink的数据。Flink Redis connector支持多种数据序列化方式,如SimpleStringSchema,你可以根据需要选择适合的。 **相关问题:** 1. Flink如何处理Redis的分布式部署? 2. Flink写入Redis时如何保证数据的一致性和可靠性? 3. Flink如何处理Redis连接异常?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值