最长公共子序列(滚动数组优化)

在网上看过无数的LCS代码,写的非常长,空间时间优化也不咋的,拿来学习非常浪费时间,代码如下。

递归公式如下,不理解公共子序列的同学,好好看下面两张图,详情可以参考算法导论。

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int i,j,dp[2][10086],t;
    char a[10086],b[10086];
    bool now,pre;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%s%s",a,b);
        memset(dp,0,sizeof(dp));
        int lena=strlen(a),lenb=strlen(b);
        for(now=1,pre=0,i=0; i<lena; i++)
            for(swap(now,pre),j=0; j<lenb; j++)
                if(a[i]==b[j])
                    dp[now][j+1]=dp[pre][j]+1;
                else
                    dp[now][j+1]=dp[pre][j+1]>dp[now][j]?dp[pre][j+1]:dp[now][j];
        printf("%d\n",dp[now][lenb]);
    }
    return 0;
}

滚动数组把n*m的二维数组压缩成 2*m的数组,只需要用到now层和pre层的数据(这层和上一层),通过now和pre的不断交换实现n*m的数组功能,大大优化了空间复杂度。

还有一维就可以实现的办法,不过代码很难理解,个人觉得没有那个必要(代码优美才是王道)。


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liar771/article/details/53870165
文章标签: 动态规划 子序列
个人分类: ACM算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭