Linux下kafka之C/C++客户端库librdkafka的编译,安装以及函数介绍

GitHub - edenhill/librdkafka: The Apache Kafka C/C++ library
librdkafka是一个开源的Kafka客户端C/C++实现,提供了Kafka生产者、消费者接口。

一、安装librdkafka
首先在github上下载librdkafka源码,解压后进行编译;
cd librdkafka-master
chmod 777 configure lds-gen.py
 ./configure
make
make install
在make的时候,如果是64位Linux会报下面这个异常
/bin/ld:librdkafka.lds:1: syntax error in VERSION script
只要Makefile.config第46行里面的WITH_LDS=y这一行注释掉就不会报错了。

注释掉:#WITH_LDS=y,然后再make

最终头文件和库文件会分别安装在

/usr/local/include/librdkafka
/usr/local/lib

二、调用librdkafka库自主编程

编译用户自己的应用程序,编译选项要加上-lrdkafka -lz -lpthread -lrt这些选项。

例如,我使用QtCreator之qmake模式,.pro文件如下:

QMAKE_LFLAGS += -lrdkafka -lrdkafka++ -lz -lpthread -lrt
#-lrdkafka等价于 LIBS += /usr/local/lib/librdkafka.so

编译通过,但是运行时会报错:error while loading shared libraries: librdkafka.so.1: cannot open shared object file: No such file or directory
此时需要在/etc/ld.so.conf中加入librdkafka.so所在的目录:/usr/local/lib/
然后在终端执行命令,使之生效:

[root@localhost etc]# ldconfig

注意,/usr/local/lib/每次有库文件更新,都需要终端重新运行一次ldconfig这条命令

三、启动kafka

详情参考我的文章:我个人的kafka_2.12-1.0.0实践:安装与测试(★firecat推荐★)

四、用法介绍,源文件来自/librdkafka-master/examples/rdkafka_example.cpp和rdkafka_consumer_example.cpp

Producer的使用方法:

创建kafka客户端配置占位符: 
conf = rd_kafka_conf_new();即创建一个配置对象(rd_kafka_conf_t)。并通过rd_kafka_conf_set进行brokers的配置。

设置信息的回调: 
用以反馈信息发送的成败。通过rd_kafka_conf_set_dr_msg_cb(conf, dr_msg_cb);实现。

创建producer实例: 
1)初始化: 
应用程序需要初始化一个顶层对象(rd_kafka_t)的基础容器,用于全局配置和共享状态。 
通过调用rd_kafka_new()创建。创建之后,该实例就占有了conf对象,所以conf对象们在rd_kafka_new()调用之后是不能被再次使用的,而且在rd_kafka_new()调用之后也不需要释放配置资源的。 
2)创建topic: 
创建的topi对象是可以复用的(producer的实例化对象(rd_kafka_t)也是允许复用的,所以这两者就没有必要频繁创建) 
实例化一个或多个 topic(rd_kafka_topic_t)用于生产或消费。 
topic 对象保存 topic 级别的属性,并且维护一个映射, 
该映射保存所有可用 partition 和他们的领导 broker 。 
通过调用rd_kafka_topic_new()创建(rd_kafka_topic_new(rk, topic, NULL);)。 
注:rd_kafka_t 和 rd_kafka_topic_t都源于可选的配置 API。 
不使用该 API 将导致 librdkafka 使用列在文档CONFIGURATION.md中的默认配置。

3)Producer API: 
通过调用RD_KAFKA_PRODUCER设置一个或多个rd_kafka_topic_t对象,就可以准备好接收消息,并组装和发送到 broker。 
rd_kafka_produce()函数接受如下参数: 
rkt : 待生产的topic,之前通过rd_kafka_topic_new()生成 
partition : 生产的 partition。如果设置为RD_KAFKA_PARTITION_UA(未赋值的),则会根据builtin partitioner去选择一个确定 partition。kafka会回调partitioner进行均衡选取,partitioner方法需要自己实现。可以轮询或者传入key进行hash。未实现则采用默认的随机方法rd_kafka_msg_partitioner_random随机选择。 
可以尝试通过partitioner来设计partition的取值。 
msgflags : 0 或下面的值: 
RD_KAFKA_MSG_F_COPY 表示librdkafka 在信息发送前立即从 payload 做一份拷贝。如果 payload 是不稳定存储,如栈,需要使用这个参数。这是以防消息主体所在的缓存不是长久使用的,才预先将信息进行拷贝。 
RD_KAFKA_MSG_F_FREE 表示当 payload 使用完后,让 librdkafka 使用free(3)释放。 就是在使用完消息后,将释放消息缓存。 
这两个标志互斥,如果都不设置,payload 既不会被拷贝也不会被 librdkafka 释放。 
如果RD_KAFKA_MSG_F_COPY标志不设置,就不会有数据拷贝,librdkafka 将占用 payload 指针(消息主体)直到消息被发送或失败。librdkafka 处理完消息后,会调用发送报告回调函数,让应用程序重新获取 payload 的所有权。 
如果设置了RD_KAFKA_MSG_F_FREE,应用程序就不要在发送报告回调函数中释放 payload。 
payload,len : 消息 payload(message payload,即值),消息长度 
key,keylen : 可选的消息键及其长度,用于分区。将会用于 topic 分区回调函数,如果有,会附加到消息中发送给 broker。 
msg_opaque : 可选的,应用程序为每个消息提供的无类型指针,提供给消息发送回调函数,用于应用程序引用。

rd_kafka_produce() 是一个非阻塞 API,该函数会将消息塞入一个内部队列并立即返回。 
如果队列中的消息数超过queue.buffering.max.messages属性配置的值,rd_kafka_produce()通过返回 -1,并将errno设置为ENOBUFS这样的错误码来反馈错误。 
提示: 见 examples/rdkafka_performance.c 获取生产者的使用。

Consumer的使用方法:

consumer API要比producer API多一些状态。 在使用RD_KAFKA_CONSUMER类型(调用rd_kafka_new时设置的函数参数)创建rd_kafka_t 对象,再通过调用rd_kafka_brokers_add对上述new出来的Kafka handle(rk)进行broker的添加(rd_kafka_brokers_add(rk, brokers)), 
然后创建rd_kakfa_topic_t对象之后,

rd_kafka_query_watermark_offsets

创建topic: 
rtk = rd_kafka_topic_new(rk, topic, topic_conf)

开始消费: 
调用rd_kafka_consumer_start()函数(rd_kafka_consume_start(rkt, partition, start_offset))启动对给定partition的consumer。 
调用rd_kafka_consumer_start需要的参数如下: 
rkt : 要消费的 topic ,之前通过rd_kafka_topic_new()创建。 
partition : 要消费的 partition。 
offset : 消费开始的消息偏移量。可以是绝对的值或两种特殊的偏移量: 
RD_KAFKA_OFFSET_BEGINNING 从该 partition 的队列的最开始消费(最早的消息)。 
RD_KAFKA_OFFSET_END 从该 partition 产生的下一个消息开始消费。 
RD_KAFKA_OFFSET_STORED 使用偏移量存储。

当一个 topic+partition 消费者被启动,librdkafka 不断尝试从 broker 批量获取消息来保持本地队列有queued.min.messages数量的消息。 
本地消息队列通过 3 个不同的消费 API 向应用程序提供服务:

    rd_kafka_consume() - 消费一个消息
    rd_kafka_consume_batch() - 消费一个或多个消息
    rd_kafka_consume_callback() - 消费本地队列中的所有消息,且每一个都调用回调函数

这三个 API 的性能按照升序排列,rd_kafka_consume()最慢,rd_kafka_consume_callback()最快。不同的类型满足不同的应用需要。 
被上述函数消费的消息返回rd_kafka_message_t类型。 
rd_kafka_message_t的成员:

* err - 返回给应用程序的错误信号。如果该值不是零,payload字段应该是一个错误的消息,err是一个错误码(rd_kafka_resp_err_t)。
* rkt,partition - 消息的 topic 和 partition 或错误。
* payload,len - 消息的数据或错误的消息 (err!=0)。
* key,key_len - 可选的消息键,生产者指定。
* offset - 消息偏移量。

不管是payloadkey的内存,还是整个消息,都由 librdkafka 所拥有,且在rd_kafka_message_destroy()被调用后不要使用。 
librdkafka 为了避免消息集的多余拷贝,会为所有从内存缓存中接收的消息共享同一个消息集,这意味着如果应用程序保留单个rd_kafka_message_t,将会阻止内存释放并用于同一个消息集的其他消息。 
当应用程序从一个 topic+partition中消费完消息,应该调用rd_kafka_consume_stop()来结束消费。该函数同时会清空当前本地队列中的所有消息。 
提示: 见 examples/rdkafka_performance.c 获取消费者的使用。

在Kafka broker中server.properties文件配置(参数log.dirs=/data2/logs/kafka/)使得写入到消息队列中的topic在该目录下对分区的形式进行存储。每个分区partition下是由segment file组成,而segment file包括2大部分:分别为index file和data file,此2个文件一一对应,成对出现,后缀”.index”和“.log”分别表示为segment索引文件、数据文件。 
segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

具体示例:

本文所采用的是cpp方式,和上述介绍的只是函数使用上的不同,业务逻辑是一样的。 
在producer过程中直接是使用PARTITION_UA 但是在消费的时候,不能够指定partition值为PARTITION_UA因为该值其实是-1,对于Consumer端来说,是无意义的。根据源码可以知道当不指定partitioner的时候,其实是有一个默认的partitioner,就是Consistent-Random partitioner所谓的一致性随机partitioner。一致性hash对关键字进行map映射之后到一个特定的partition。 
函数原型:

rd_kafka_msg_partitioner_consistent_random (
           const rd_kafka_topic_t *rkt,
           const void *key, size_t keylen,
           int32_t partition_cnt,
           void *opaque, void *msg_opaque);

PARTITION_UA其实是Unassigned partition的意思,即是未赋值的分区。RD_KAFKA_PARTITION_UA (unassigned)其实是自动采用topic下的partitioner函数,当然也可以直接采用固定的值。 
在配置文件config/server.properties中是可以设置partition的数量num.partitions

分配分区

在分配分区的时候,要注意。对于一个已经创建了分区的主题且已经指定了分区,那么之后的producer代码如果是直接修改partitioner部分的代码,直接引入key值进行分区的重新分配的话,是不行的,会继续按照之前的分区进行添加(之前的分区是分区0,只有一个)。此时如果在程序中查看partition_cnt我们是可以看到,该值并没有因为config/server.properties的修改而变化,这是因为此时的partition_cnt是针对该已经创建的主题topic的。 
而如果尚自单纯修改代码中的partition_cnt在用于计算分区值时候:djb_hash(key->c_str(), key->size()) % 5 是会得到如下结果的:提示分区不存在。 
这里写图片描述 
我们可以通过rdkafka_example来查看某个topic下对应的partition数量的: 
./rdkafka_example -L -t helloworld_kugou -b localhost:9092

这里写图片描述
从中我们可以看到helloworld_kugou主题只有一个partition,而helloworld_kugou1主题是有5个partition的,这个和我们预期的相符合。 
我们可以对已经创建的主题修改其分区: 
./bin/kafka-topics.sh --zookeeper 127.0.0.1:2181 --alter --partition 5 --topic helloworld_kugou 
修改完之后,我们可以看出,helloworld_kugou已经变为5个分区了。 
这里写图片描述
这里写图片描述

具体示例:

创建topic为helloworld_kugou_test,5个partition。我们可以看到,在producer端进行输入之前,在预先设置好的log目录下是已经有5个partition: 
这里写图片描述

producer端代码:

class ExampleDeliveryReportCb : public RdKafka::DeliveryReportCb 
{
 public:
  void dr_cb (RdKafka::Message &message) {
    std::cout << "Message delivery for (" << message.len() << " bytes): " <<
        message.errstr() << std::endl;
    if (message.key())
      std::cout << "Key: " << *(message.key()) << ";" << std::endl;
  }
};


class ExampleEventCb : public RdKafka::EventCb {
 public:
  void event_cb (RdKafka::Event &event) {
    switch (event.type())
    {
      case RdKafka::Event::EVENT_ERROR:
        std::cerr << "ERROR (" << RdKafka::err2str(event.err()) << "): " <<
            event.str() << std::endl;
        if (event.err() == RdKafka::ERR__ALL_BROKERS_DOWN)
          run = false;
        break;

      case RdKafka::Event::EVENT_STATS:
        std::cerr << "\"STATS\": " << event.str() << std::endl;
        break;

      case RdKafka::Event::EVENT_LOG:
        fprintf(stderr, "LOG-%i-%s: %s\n",
                event.severity(), event.fac().c_str(), event.str().c_str());
        break;

      default:
        std::cerr << "EVENT " << event.type() <<
            " (" << RdKafka::err2str(event.err()) << "): " <<
            event.str() << std::endl;
        break;
    }
  }
};

/* Use of this partitioner is pretty pointless since no key is provided
 * in the produce() call.so when you need input your key */
class MyHashPartitionerCb : public RdKafka::PartitionerCb {
    public:
        int32_t partitioner_cb (const RdKafka::Topic *topic, const std::string *key,int32_t partition_cnt, void *msg_opaque) 
        {
            std::cout<<"partition_cnt="<<partition_cnt<<std::endl;
            return djb_hash(key->c_str(), key->size()) % partition_cnt;
        }
    private:
        static inline unsigned int djb_hash (const char *str, size_t len) 
        {
        unsigned int hash = 5381;
        for (size_t i = 0 ; i < len ; i++)
            hash = ((hash << 5) + hash) + str[i];
        std::cout<<"hash1="<<hash<<std::endl;

        return hash;
        }
};

void TestProducer()
{
    std::string brokers = "localhost";
    std::string errstr;
    std::string topic_str="helloworld_kugou_test";//自行制定主题topic
    MyHashPartitionerCb hash_partitioner;
    int32_t partition = RdKafka::Topic::PARTITION_UA;
    int64_t start_offset = RdKafka::Topic::OFFSET_BEGINNING;
    bool do_conf_dump = false;
    int opt;

    int use_ccb = 0;

    //Create configuration objects
    RdKafka::Conf *conf = RdKafka::Conf::create(RdKafka::Conf::CONF_GLOBAL);
    RdKafka::Conf *tconf = RdKafka::Conf::create(RdKafka::Conf::CONF_TOPIC);

    if (tconf->set("partitioner_cb", &hash_partitioner, errstr) != RdKafka::Conf::CONF_OK) 
     {
          std::cerr << errstr << std::endl;
          exit(1);
     }

    /*
    * Set configuration properties
    */
    conf->set("metadata.broker.list", brokers, errstr);
    ExampleEventCb ex_event_cb;
    conf->set("event_cb", &ex_event_cb, errstr);

    ExampleDeliveryReportCb ex_dr_cb;

    /* Set delivery report callback */
    conf->set("dr_cb", &ex_dr_cb, errstr);

    /*
     * Create producer using accumulated global configuration.
     */
    RdKafka::Producer *producer = RdKafka::Producer::create(conf, errstr);
    if (!producer) 
    {
        std::cerr << "Failed to create producer: " << errstr << std::endl;
        exit(1);
    }

    std::cout << "% Created producer " << producer->name() << std::endl;

    /*
     * Create topic handle.
     */
    RdKafka::Topic *topic = RdKafka::Topic::create(producer, topic_str, tconf, errstr);
    if (!topic) {
      std::cerr << "Failed to create topic: " << errstr << std::endl;
      exit(1);
    }

    /*
     * Read messages from stdin and produce to broker.
     */
    for (std::string line; run && std::getline(std::cin, line);)
    {
        if (line.empty())
        {
            producer->poll(0);
            continue;
        }

      /*
       * Produce message
        // 1. topic
        // 2. partition
        // 3. flags
        // 4. payload
        // 5. payload len
        // 6. std::string key
        // 7. msg_opaque? NULL
       */
      std::string key=line.substr(0,5);//根据line前5个字符串作为key值
      // int a = MyHashPartitionerCb::djb_hash(key.c_str(),key.size());
      // std::cout<<"hash="<<a<<std::endl;
      RdKafka::ErrorCode resp = producer->produce(topic, partition,
          RdKafka::Producer::RK_MSG_COPY /* Copy payload */,
          const_cast<char *>(line.c_str()), line.size(),
          key.c_str(), key.size(), NULL);//这里可以设计key值,因为会根据key值放在对应的partition
        if (resp != RdKafka::ERR_NO_ERROR)
            std::cerr << "% Produce failed: " <<RdKafka::err2str(resp) << std::endl;
        else
            std::cerr << "% Produced message (" << line.size() << " bytes)" <<std::endl;
        producer->poll(0);//对于socket进行读写操作。poll方法才是做实际的IO操作的。return the number of events served
    }
    //
    run = true;

    while (run && producer->outq_len() > 0) {
      std::cerr << "Waiting for " << producer->outq_len() << std::endl;
      producer->poll(1000);
    }

    delete topic;
    delete producer;
}

在Consumer端进行验证的时候,可以发现不同的partition确实写入了不同的数据。结果如下: 
这里写图片描述

Consumer端代码:


void msg_consume(RdKafka::Message* message, void* opaque)
{
    switch (message->err())
    {
        case RdKafka::ERR__TIMED_OUT:
            break;

        case RdKafka::ERR_NO_ERROR:
          /* Real message */
            std::cout << "Read msg at offset " << message->offset() << std::endl;
            if (message->key())
            {
                std::cout << "Key: " << *message->key() << std::endl;
            }
            printf("%.*s\n", static_cast<int>(message->len()),static_cast<const char *>(message->payload()));
            break;
        case RdKafka::ERR__PARTITION_EOF:
              /* Last message */
              if (exit_eof)
              {
                  run = false;
              }
              break;
        case RdKafka::ERR__UNKNOWN_TOPIC:
        case RdKafka::ERR__UNKNOWN_PARTITION:
            std::cerr << "Consume failed: " << message->errstr() << std::endl;
            run = false;
            break;
    default:
        /* Errors */
        std::cerr << "Consume failed: " << message->errstr() << std::endl;
        run = false;
    }
}
class ExampleConsumeCb : public RdKafka::ConsumeCb {
    public:
        void consume_cb (RdKafka::Message &msg, void *opaque)
        {
            msg_consume(&msg, opaque);
        }
};
void TestConsumer()
{
    std::string brokers = "localhost";
    std::string errstr;
    std::string topic_str="helloworld_kugou_test";//helloworld_kugou
    MyHashPartitionerCb hash_partitioner;
    int32_t partition = RdKafka::Topic::PARTITION_UA;//为何不能用??在Consumer这里只能写0???无法自动吗???
    partition = 3;
    int64_t start_offset = RdKafka::Topic::OFFSET_BEGINNING;
    bool do_conf_dump = false;
    int opt;

    int use_ccb = 0;

    //Create configuration objects
    RdKafka::Conf *conf = RdKafka::Conf::create(RdKafka::Conf::CONF_GLOBAL);
    RdKafka::Conf *tconf = RdKafka::Conf::create(RdKafka::Conf::CONF_TOPIC);

    if (tconf->set("partitioner_cb", &hash_partitioner, errstr) != RdKafka::Conf::CONF_OK) 
    {
        std::cerr << errstr << std::endl;
        exit(1);
    }

    /*
    * Set configuration properties
    */
    conf->set("metadata.broker.list", brokers, errstr);
    ExampleEventCb ex_event_cb;
    conf->set("event_cb", &ex_event_cb, errstr);

    ExampleDeliveryReportCb ex_dr_cb;

    /* Set delivery report callback */
    conf->set("dr_cb", &ex_dr_cb, errstr);
    /*
     * Create consumer using accumulated global configuration.
     */
    RdKafka::Consumer *consumer = RdKafka::Consumer::create(conf, errstr);
    if (!consumer) 
    {
      std::cerr << "Failed to create consumer: " << errstr << std::endl;
      exit(1);
    }

    std::cout << "% Created consumer " << consumer->name() << std::endl;

    /*
     * Create topic handle.
     */
    RdKafka::Topic *topic = RdKafka::Topic::create(consumer, topic_str, tconf, errstr);
    if (!topic)
    {
      std::cerr << "Failed to create topic: " << errstr << std::endl;
      exit(1);
    }

    /*
     * Start consumer for topic+partition at start offset
     */
    RdKafka::ErrorCode resp = consumer->start(topic, partition, start_offset);
    if (resp != RdKafka::ERR_NO_ERROR) {
      std::cerr << "Failed to start consumer: " << RdKafka::err2str(resp) << std::endl;
      exit(1);
    }

    ExampleConsumeCb ex_consume_cb;

    /*
     * Consume messages
     */
    while (run)
    {
        if (use_ccb)
        {
            consumer->consume_callback(topic, partition, 1000, &ex_consume_cb, &use_ccb);
      }
      else 
      {
          RdKafka::Message *msg = consumer->consume(topic, partition, 1000);
          msg_consume(msg, NULL);
          delete msg;
      }
      consumer->poll(0);
    }

    /*
     * Stop consumer
     */
    consumer->stop(topic, partition);

    consumer->poll(1000);

    delete topic;
    delete consumer;
}

那么在producer端怎么根据key值获取具体是进入哪个partition的呢?是否有接口可以查看呢?这个有待补充。

---

参考文章:

librdkafka的安装和使用

Linux下librdkafka客户端的编译运行

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值