Stable Diffusion【 ControlNet实战】OpenPose 轻松制作武侠动作

如何通过Stable Diffusion ControlNet来进行姿态控制。来一起来看下简单示例:

参数设置:

大模型: 墨幽人造人_v1080

模型下载地址: https://www.liblib.art/modelinfo/9470cdf92e33f5ad72cc2f40f834a69a

分辨率: 768*512

采样方法 (Sampler): Euler a

迭代步数 (Steps): 50

提示词引导系数 (CFG Scale): 7

Lora:仙侠古装_仙侠1.3

*Lora下载地址:*

https://www.liblib.art/modelinfo/014a5ebbf32a41a49278221cc8b974ee

Lora:Xian-T手部修复_v3.0

*Lora下载地址:*

https://www.liblib.art/modelinfo/855ea21b14ad4c04810eade3f05b0fdd

**Lora:**SYK_Mild detail adjuster(用于改变原有画面的姿势、服装、色彩等)

*Lora下载地址:*

https://www.liblib.art/modelinfo/65ebb9c3ebfe4317b82edaea10760b3c

使用OpenPose控制这里其实你可以使用其他图片进行姿态控制,老徐这里仍然推荐这款在线网站,提供了多种姿态。网站地址:https://www.posemaniacs.com/poses,在里面选择一张想要创作的姿态图,可以进行下载或截图保存。

场景一:茶楼静坐图片

启用ControlNet 选择OpenPose (姿态)控制,上传参考姿态图,点击预处理器后面的爆炸图标,进行预览。这里如果出现姿势识别效果很差的时候并不需要担心,我们可以点击预览图右侧的**编辑按钮,**进行进一步的编辑。这里手部没有进行细致调整,所以导致下面生图手部存在严重问题。

图片

图片

编辑调整参考姿态,编辑完成后,点击左上角发送姿势到ControlNet按钮。

图片

下一步,填写提示词进行跑图抽卡,提示词需要根据您想要创作的场景的同时也要贴合下面ControlNet的姿态场景。

图片

提示词:

masterpiece,highres,best quality,1 girI in ancient tea houses, sitting on chairs, chinese immortal,chinese clothes,<lora:仙侠古装_仙侠1.3【chinese immortal,chinese clothes,1gir】:0.6>,lora:Xian-T手部修复_v3.0:1,<lora:SYK_Mild detail adjuster_V1.0_4(MINI):1>

杰作,高层,最好的质量,1 girI在古老的茶馆,坐在椅子上,中国的神仙,中国的衣服,lora:仙侠古装_仙侠1.3【中国神仙,中国衣服,1gir】:0.6,lora:仙-T手部修复_v3.0:1,lora:SYK_轻度细节调节器_V1.0_4(MINI):1

图片

前面没有进行手部调整,手部生成的太可怕了,这里老徐尝试进行了隐藏手部

图片

图片

场景二:练习剑术

图片

该姿势上传到ControlNet中后也会出现手部识别的问题,即便使用了手部修复的Lora,但因ControlNet的控制权重过高也会导致失效,这时,老徐同样使用了编辑功能,对手部节点进行适当编辑完善。简单粗暴的方法仍然是去掉所有手指,让AI自己去绘制。

图片

图片

**提示词:**masterpiece,highres,best quality,1 girI Practicing swordsmanship by the river,chinese immortal,chinese clothes,<lora:仙侠古装_仙侠1.3【chinese immortal,chinese clothes,1gir】:0.6>,lora:Xian-T手部修复_v3.0:1,<lora:SYK_Mild detail adjuster_V1.0_4(MINI):1>

杰作,高层,最好的质量,1 girI在河边练习剑术,lora:仙侠古装_仙侠1.3【中国神仙,中国衣服,1gir】:0.6,lora:仙-T手部修复_v3.0:1,lora:SYK_轻度细节调节器_V1.0_4(MINI):1

图片

图片

场景三:林中练拳

图片

提示词:

masterpiece,highres,best quality,1 girI Practicing boxing in the forest,chinese immortal,chinese clothes<lora:仙侠古装_仙侠1.3【chinese immortal,chinese clothes,1gir】:0.6>,lora:Xian-T手部修复_v3.0:1,<lora:SYK_Mild detail adjuster_V1.0_4(MINI):1>

杰作,高层,最好的质量,1 girI在森林里练习拳击,中国神仙,中国衣服lora:仙侠古装_仙侠1.3【中国神仙,中国衣服,1gir】:0.6,lora:仙-T手部修复_v3.0:1,lora:SYK_轻度细节调节器_V1.0_4(MINI):1

图片

哈哈,看看这个练拳击的,拳击手套都戴上了图片(稍微娱乐一下~)

图片

有时候姿态控制效果不太好,需要自己细心编辑达到更好的效果,由于老徐这里没有进行对手部细致的调整,里面手部控制仍然存在很多问题,即便使用了手部修复Lora 仍然难以控制。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### Stable DiffusionControlNet 技术详解 #### 控制生成过程中的不确定性 Stable Diffusion 是一种强大的图像生成功能,能够基于文本描述创建视觉内容。不过,在实际应用过程中发现仅依赖于复杂的提示词难以精准控制输出效果[^2]。 为了改善这一点,ControlNet 扩展被引入到 Stable Diffusion 中来增强模型的表现力。通过利用额外的信息作为条件输入给扩散模型,使得用户可以在一定程度上指导生成流程,从而获得更加符合预期的结果。 #### 获取并加载预训练好的 Community Model 对于想要尝试不同风格或者特定功能的使用者来说,可以从 Hugging Face 平台获取由社区贡献的各种版本的 ControlNet 模型文件。这些资源位于指定链接下,并且支持直接应用于个人项目之中[^1]: - 社区 ControlNet 模型下载地址:<https://huggingface.co/lllyasviel/sd_control_collection/tree/main> #### 配置 WebUI 插件以启用 ControlNet 功能 当已经在本地环境中部署好了基础版 Stable Diffusion 后,下一步就是安装对应的插件以便更好地操作新加入的功能模块。这通常涉及到修改配置文件以及确保所有必要的依赖项都已经正确设置完毕。完成之后就可以在图形界面里找到新增加的操作选项了。 #### 调整参数优化输出质量 值得注意的是,除了简单的开启关闭之外,还可以进一步微调一些高级设定比如 `controlnet_exit_step` 来影响整个渲染周期内的干预程度。例如将该值设为 0.8 表明只会在前百分之八十的时间段内保持激活状态直到第 24 步结束时停止作用[^5]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape with mountains and rivers." image = pipe(prompt=prompt, controlnet_model="path_to_your_downloaded_ControlNet", controlnet_exit_step=0.8).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值