【Stable Diffusion】大模型/Lora触发词插件lora-prompt-tool

又是一个神器,小伙伴们搬好小板凳,准备好我要开始了。

我们知道,在很多模型和lora使用的时候,是需要填写触发词的。比如这个盲盒lora,提示词就是“full body, chibi”,需要把这些触发词放到正向提示词里面才能达到想要的效果。

img

举个例子,当我们只引用lora,而不填入触发词的时候是这样的。

img

img

当我们填入特定的触发词之后,就达到了这个lora该有的效果。所以,有的时候你的成图效果不理想,有可能是因为你没有填写模型或lora的触发词。

img

img

但是,当你的模型和lora越来越多的时候,你还能记得它们的触发词吗?那肯定是不可能的。

img

这时候就需要我们的插件登场了,它就是——lora-prompt-tool

安装方式就是在扩展面板中点击“从网址安装”,然后输入以下地址https://github.com/a2569875/lora-prompt-tool,可以直接安装。

img

或者将我提供的插件文件夹复制到这个目录下“……\sd-webui-aki-v4\extensions”。

img

安装完成后,重启webUI,就装好了。

接下来,在你想要使用的lora上面点击右键,就可以看到它的触发词了,直接点击就能加载到正向提示词当中。

img

当然,并不是所有的模型或者lora都有触发词,这个时候你也可以手动编辑,给它加上你自定义的触发词。

img

不过,这些还不是这个插件最厉害的功能。

当我们浏览C站上这个模型/lora的主页的时候,是可以看到很多官方图的。

img

我们之前安装的C站助手插件,是可以将这张封面图的提示词一键导入到SD里面,这样可以帮助我们快速得到这个官方图片的效果。

img

而当我们安装了这个插件之后,我们就可以直接从这里看到官方的其他例图,并且可以一键将这张图所有的提示词和设置参数全部拷贝到SD中。

img

这样就能生成和官方图片差不多的效果了,大模型需要你自己选择好。当然这个操作的目的不是让你抄袭别人的图片,而是可以更好的学习到一些关键的提示词写法,达到事半功倍的效果。

img

img

以上就是关于大模型/Lora触发词插件lora-prompt-tool的介绍,有了它之后,我们就能更轻松的使用模型和lora了。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### Stable Diffusion LoRA 模型介绍 LoRA,即低秩适应(Low-Rank Adaptation),是一种用于大型语言模型微调的技术[^1]。该技术允许通过引入低维参数矩阵来高效地自定义预训练的大规模模型,而不需要重新训练整个网络结构。 对于图像生成领域而言,在Stable Diffusion框架下,LoRA表现为一种能够利用较少数据集快速适配特定风格或者概念的学习机制[^2]。这意味着开发者可以通过相对较小的努力让现有的扩散模型学会新的视觉特征,进而影响最终渲染出来的艺术作品样式。 具体来说,当涉及到实际操作层面时: - **安装配置**:为了使Lora模块正常工作于Stable Diffusion环境中,用户可能需要手动指定Lora权重文件的位置。这通常涉及查找并编辑软件内部的相关路径选项,确保程序可以从正确的地方加载所需的扩展资源[^3]。 - **训练过程**:尽管只需要有限数量的例子就能完成一次有效的迁移学习任务,但在准备阶段仍然建议精心挑选代表性样本作为输入素材。此外,合理设定超参数也是保障良好性能不可或缺的一环。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) # 加载LoRA权重到pipeline中 lora_path = "/path/to/lora/weights" # 替换为具体的LoRA权重路径 pipe.unet.load_attn_procs(lora_path) prompt = "A fantasy landscape with mountains and rivers." image = pipe(prompt).images[0] image.save("fantasy_landscape.png") ``` 上述代码片段展示了如何将预先训练好的LoRA权重应用于Stable Diffusion管道以生成基于提示词的艺术图像。 #### 注意事项 - 用户应当注意不同版本之间可能存在差异,因此务必确认所使用的文档资料与当前环境相匹配。 - 对于初次接触此类高级特性的新手来说,阅读官方指南以及参与社区讨论往往能提供宝贵的帮助和支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值