Stable Diffusion插件深度教程:给LoRA模型添加专业缩略图(含风格化模板)

前言:

本文是Stable Diffusion进阶教程,手把手教你使用插件为LoRA模型添加高质量缩略图。包含风格化模板库、批量生成技巧和行业标准规范,解决"预览不直观"、“风格不统一”、"制作效率低"三大痛点,让你的模型库更专业。

LORA缩略图和管理(Civitai Helper)

强大的LORA管理插件,可以自动下载缩略图和更新版本

img

自动下载缩略图

img

没有缩略图

LORA越来越多,自己手动弄缩略图太麻烦了,不然就一片灰?

试试这个插件,可以自动下载,简单易用

img

Civitai Helper插件设置页

下载地址

C站地址: Civitai | Share your models

这份完整版的SD、comfyui模型整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

LORA按需分类

想做到LORA这样一目了然,分类明确吗?

其实很简单

img

虽然方法简单,貌似说的人很少很少

进到存放lora的文件夹

img

然后在此目录下,建立你想要分类的文件夹,把相应的lora拖进去就行了

是不是很简单?

大模型按需分类

和lora分类的方法类似

进到model的目录

如下

img

然后建立自己想分类的目录,例如我建立一个动漫的文件夹

img

把相应的模型丢进去

然后刷新UI,模型选择界面就可以看到这个了

img

切换模型的VAE

随着我们的模型越来越多,我们会发现模型需要配套的VAE是不一样的,有时候切来切去会很麻烦,这时候我们可以利用SD原有的功能来实现快速切换VAE

img

快速切换VAE

先进入到设置页面,选择用户界面

img

找到快捷设置列表

在sd_model_checkpoint后面输入,sd_vae

变成sd_model_checkpoint,sd_vae,保存设置并重启UI即可

高级预设模版Preset Manager

SD有自带的预设模版,可以一键保存我们的关键词

但是局限性很强,步数,种子,绘图方式,高清修复都不能保存,用Preset Manager可以保存我们大多数参数

img

也可以快速切换预存设置,很是方便

下载地址

GitHub - Gerschel/sd_web_ui_preset_utils: Preset Manager moved private

显存神器Tiled VAE

显存小但是想要大尺寸怎么办?这时候我们可以试试这个工具Tiled VAE

如果原先只能512x768,用了翻倍,高清修复highres.fix同样有效,1.5倍能提升到2倍,相当给力

原理是将大图分成一片一片的区域,分开生成再合并

img

插件界面

官方中文文档:multidiffusion-upscaler-for-automatic1111/README_CN.md at main · pkuliyi2015/multidiffusion-upscaler-for-automatic1111 · GitHub

下载地址

GitHub - pkuliyi2015/multidiffusion-upscaler-for-automatic1111: Tiled Diffusion and VAE optimize, licensed under CC BY-NC-SA 4.0

图片反推文字及打标(TAGGER)

可以导入图片让AI反推文字,功能和准确性都比SD自带的强不少,达到模仿和学习的目的,更多时候是训练LORA的时候用于批量打标签。

img

用完记得卸载模型,不然很占显存

下载地址

GitHub - toriato/stable-diffusion-webui-wd14-tagger: Labeling extension for Automatic1111’s Web UI

抠图插件(有些麻烦)

安装后可以找到后期处理这个选项

img

选择remove background,然后选择u2netp算法

img

抠图成功

img

图片放大神器Tiled VAE

依然还是Tiled VAE,在图生图界面中可以直接把图放大,补充细节,超级给力

示例:从1024 * 800 放大到 4096 * 3200 ,使用默认参数

  • 参数:

    • 降噪 = 0.4,步数 = 20,采样器 = Euler a,放大器 = RealESRGAN++,负面提示语=EasyNegative,
    • 模型:Gf-style2 (4GB 版本), 提示词相关性(CFG Scale) = 14, Clip 跳过层(Clip Skip) = 2
    • 方法(Method) = MultiDiffusion, 分块批处理规模(tile batch size) = 8, 分块高度(tile size height) = 96, 分块宽度(tile size width) = 96, 分块重叠(overlap) = 32
    • 全局提示语 = masterpiece, best quality, highres, extremely detailed 8k wallpaper, very clear, 全局负面提示语 = EasyNegative.

原图:

img

1024x800分辨率

img

4X放大4096 * 3200

下载地址

GitHub - pkuliyi2015/multidiffusion-upscaler-for-automatic1111: Tiled Diffusion and VAE optimize, licensed under CC BY-NC-SA 4.0

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的SD、comfyui模型整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Stable Diffusion WebUI LoRA 使用指南 #### 什么是 LoRALoRA(Low-Rank Adaptation)是一种高效的微调方法,能够在不显著增加模型体积的情况下实现个性化风格或主题的调整。通过仅更新部分参数矩阵中的低秩分解成分,大幅降低了存储需求和计算开销[^1]。 --- #### 安装与配置 为了在 Stable Diffusion WebUI 中启用 LoRA 功能,需按照以下步骤操作: 1. **下载 LoRA 模型** 获取所需的 LoRA 文件(通常为 `.safetensors` 或 `.ckpt` 格式),并将它们保存到 `stable-diffusion-webui/models/Lora/` 目录下[^1]。 2. **启动 WebUI 并加载 LoRA** 启动 Stable Diffusion WebUI 应用程序后,在主界面上切换至 “LoRA” 选项卡。此时应该可以看到刚才放置好的 LoRA 模型列表[^1]。 3. **设置权重比例** 对于选定的一个或多个人 LoRA 模型,可通过滑块调节其应用强度,默认值一般设为 1.0 表示完全生效。 4. **附加预览图支持** 若希望更直观了解各 LoRA 的实际效果,可额外准备一张同名缩略图存放在同一目录里,这样就能自动展示出来作为参考[^1]。 --- #### 使用技巧 下面列举了一些实用建议帮助更好地发挥 LoRA 的潜力: - **混合多种样式** 当前版本允许多选几个不同类型的 LoRA 组件叠加在一起使用,从而创造出更加丰富的艺术表达形式。 - **适配特定场景** 结合 Prompt 工程原则精心设计输入描述语句,使得生成作品更能贴合预期目标。 - **探索社区资源** 积极参与相关论坛讨论交流心得体验,并及时关注官方发布的新特性升级动态[^1]。 --- #### 示例代码片段 假设已经成功导入了一个名为 `custom_style.lora` 的模块,那么可以在脚本中像这样指定它的作用程度: ```python lora_weight = { 'custom_style': 0.7, # 自定义风格的影响因子设定为 70% } ``` 随后将其传递给管道实例初始化过程之中以便正式投入使用: ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained( pretrained_model_name_or_path="path/to/base/model", lora_weights=lora_weight, ) ``` --- #### 注意事项 尽管 LoRA 提供了一种简便途径快速定制专属外观特征,但仍存在一些局限性需要注意规避: - 不恰当的选择可能会导致输出质量下降甚至崩溃现象发生; - 需要充分测试各种组合搭配找到最理想方案; - 定期备份原始未修改过的基线架构以防意外丢失珍贵资料。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值