stablediffusion四大热门模型下载网站

在这里插入图片描述

想要获取优质的AI绘画模型,如lora模型,却不知道去哪里下载?别担心,以下是四大热门网站,助您轻松找到心仪的模型!

一、Civitai(http://civitai.com)——AI艺术模型的宝库

Civitai,简称C站,是知名的Diffusion AI艺术模型平台。

这里汇聚了超过1700个精选模型,均由全球热爱艺术的创作者上传并分享。

此外,Civitai还提供了12000多张带有提示语的示例图片,供用户参考和评价。

不仅可以上传自己训练的模型,还能下载和使用其他用户创建的模型。

更有Automatic1111 SD Web UI扩展,让您根据模型哈希值自动下载预览图像和模型,体验无比便捷。

img

二、哩布哩布AI(http://iblibai.com)——国内原创模型的首选

哩布哩布AI是国内原创模型设计与分享的领军网站。

这里收录了各类流行的checkpoint、lora模型以及小众AI模型,资源丰富,且无需注册即可下载。

网站不仅提供模型下载地址,还有作者详尽的模型介绍和使用教程,让您更深入地理解每个模型,便于二次开发和应用。

众多国内作者已在此上传训练好的模型,对于新手而言,哩布哩布AI无疑是首选之地。

img

三、炼丹阁(http://liandange.com)——国内大型模型资源库

炼丹阁是国内大型的模型资源库,收录了数以万计的模型,几乎涵盖了所有流行模型及小众模型,大部分模型源自C站。

网站提供详尽的参数说明和介绍,让您充分理解每个模型的用途和特色。

虽然需要注册登录才能下载,但对于急需模型资源的新手来说,炼丹阁依然是不可多得的宝藏网站。

img

四、抱脸网(huggingface)——海外AI模型分享的快车道

抱脸网是一家海外的AI模型分享网站,直接提供大量SD和DDL模型下载地址。

注册和下载完全自由,且网站全部英文,没有图片预览,仿佛是一个AI模型的github。

但下载体验却非常流畅,几乎没有限速和等待。如果您想快速找到并下载所需的模型,抱脸网无疑是最佳选择。

以上四大网站各具特色,无论您是新手还是资深玩家,都能找到适合自己的AI绘画模型。快来探索吧,让创意无限延伸!

img

如何学习Stable Diffusion ?

2023年,AIGC绘画元年,从年初以来,以Midjourney和Stable Diffusion 为代表的AIGC绘画迎来春天,掀起了一场生产力革命。

Stable diffuson最大的优势在于它的可控性以及免费开源。很多人想学习和使用stable diffusion,网上一搜,往往在安装这一步就劝退了很多人。

也因为Stable diffusion中的参数非常非常多,极其容易劝退,但事实是,对于我们来说,只需要熟练使用即可,并不需要深入的去研究它的原理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的StableDiffusion学习资料包括:StableDiffusion学习思维导图、StableDiffusion必备模型,精品AI学习书籍手册、视频教程、实战学习等录播视频免费分享出来,点击下方卡片直接获取。

img

第一阶段(10天)Stable Diffusion初始入门

该阶段让大家对StableDiffusion有一个最前沿的认识,规避碎片化学习,对SD的理解将超过 95% 的人。可以在相关讨论发表高级、不跟风、又接地气的见解,成为AI艺术创作领域的佼佼者。

  • 1.Stable Diffusion的起源及工作原理
  • 2.Midjourney跟Stable Diffusion之间的的区分指南
  • 3.Stable Diffusion一键包快速实现部署
  • 4.Stable Diffusion启动器参数
  • 5.Stable Diffusion的“Settings”页面高效配置Al模型
  • 6.Stable Diffusion的插件安装指南
  • 7.汉化Stable Diffusion界面实操
  • 8.Stable Diffusion中的大模型使用指南
  • 9.Stable Diffusion VAE模型
  • 10.txt2img文本提示转换成图像实操
  • 11.生成(Generate)功能相关的系列按钮
  • 12.单批跟总批的配比选择指南
  • 13.采样方法
  • 14.生成图像的引导迭代步数

第二阶段(30天)Stable Diffusion进阶应用

该阶段我们正式进入StableDiffusion进阶实战学习,学会构造私有知识库,扩展不同的艺术风格。快速根据甲方的要求改动高效出图。掌握智能绘图最强的AI软件,抓住最新的技术进展,适合所有需出图行业真·生产力大爆发!!!

  • 1.涂鸦Sketch功能
  • 2.涂重绘鸦Inpainting Sketch功能
  • 3.局部重绘Inpainting功能详解
  • 4.上传蒙版Inpainting upload功能
  • 5.segment anything辅助抠图功能
  • 6.inpaint anything蒙版获取功能
  • 7.ControlNet的起源及工作原理
  • 8.ControlNet插件扩展功能
  • 9.ControlNet基础界面使用指南
  • 10.ControlNet五种线稿模型
  • 11…ControlNet重绘修复模型
  • 12.ControlNet 图像提示迁移模型实战

第三阶段(30天)专属Lora模型训练

恭喜你,如果学到这里,所有设计类岗位你将拥有优先选择权,自己也能训练Lora 了!通过对模型进行微调有效减少模型的参数量和计算量,以生成特定的人物、物品或画风,掌握更多技术方案

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 1.定制个人的LORA模型适配个性化需求
  • 2.高质量素材过程中的重要事项收集指南
  • 3.birme工具批量化的处理图片实战
  • 4.BooruDatasetTagManager工具打标图片实战
  • 5.正则化训练集使用指南
  • 6.SD-tainerLORA训练工具
  • 7.SD-tainer工具训练自己的Lora操作
  • 8.LORA模型测试指南

第四阶段(20天):商业闭环

对氛围性场景,关键词技巧,图生图实操流程等方面有一定的认知,教你「精准控制」所有图片细节,可以在云端和本地等多种环境下部署StableDiffusion,找到适合自己的项目/创业方向,做一名被 AI 武装的社会主义接班人。

  • 1.CodeFomer模型实战
  • 2.固定同一人物形象IP实战
  • 3.广告设计
  • 4.电商海报设计
  • 5.制作3D质感
  • 6.室内设计全案例流程
  • 7.AI赋能电商新视觉
  • 8.老照片修复
  • 9.小说推文
  • 10.影视游戏制作
  • 11.游戏开发设计
  • 12.三维软件去精准辅助SD出高质量图实战
  • 13.GFPGAN模型实战

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名AI绘图大神的正确特征了。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### 下载StableDiffusion线稿模型 为了下载并使用StableDiffusion线稿模型,需遵循一系列具体的操作流程。通常情况下,获取此类模型涉及访问官方资源库或可信第三方平台,在这些平台上寻找专门针对线稿生成优化过的版本[^1]。 #### 准备工作环境 确保本地开发环境中已安装必要的依赖项和支持工具,比如Python解释器以及Git命令行工具等基础组件。对于深度学习框架的支持包也应提前部署好,这有助于后续更顺畅地加载预训练权重文件和其他辅助脚本。 #### 获取模型仓库 通过克隆GitHub上的指定存储库来获得最新的源码和配套文档: ```bash git clone https://github.com/some-repo/stable-diffusion-line-art.git cd stable-diffusion-line-art ``` #### 安装依赖关系 按照README.md中的指导说明执行pip install指令以安装所需的Python库: ```bash pip install -r requirements.txt ``` #### 加载预训练模型 从Hugging Face或其他公开渠道下载预先训练好的线稿风格转换模型,并将其放置于项目的models目录下。注意确认所选模型确实适用于创建线条画效果的任务场景[^4]。 #### 运行测试样例 最后一步是验证整个设置是否正常运作,可以通过运行提供的demo.py脚本来查看实际输出结果: ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("path/to/line_art_model") image = pipeline(prompt="A beautiful landscape").images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值