【Stable Diffusion】最强模型——Flux推荐和下载

前言

Flux是一个由黑森林实验室(Black Forest Lab)推出的模型,开发人员由Stable Diffusion前离职人员构成。做到了很多SD和MJ都做不到或者很难做到的事情。其特点主要如下:

  • 参数规模****:官方号称模型有12B(120亿)参数,是迄今为止最大的开源文本到图像模型之一。在视觉质量、提示词遵循、大小/纵横比可变性、字体和输出多样性等方面超越了其他流行的模型。

  • 针对不同需求的多种模型:提供三种不同性能和用途的变体,包括专业版(FLUX.1 [pro])、开发版(FLUX.1 [dev])和快速版(FLUX.1 [schnell])。

  • 技术层面提升:引入了流匹配训练方法、旋转位置嵌入和并行注意力层,提高了模型性能和硬件效率。

  • 对文字的写入:可以将文字写入图片中,成为图片的一部分。

Flux的官方介绍如下:

所有的AI设计工具,模型和插件,都已经整理好了,👇获取~

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

官方示例:

把 Markdown 文本粘贴到这里,点上面的按钮,就可以开始一键转换了,可以选择带时间模块,也可以不带。

_1_

先说结论

非常强大

要用一个短语总结只有“非常强大”四个字。在刚出来的时候很多人的评价就是拳打Stable Diffusion3,脚踢Midjourney,在使用过后我觉得毫不夸张。有几个非常值得注意的点:

图片有非常好的精神和虚化效果

全图中背景虚化以达到景深的感觉,对人物的刻画细节满满。

人物的手指非常清晰且无需修正

实际上对于人物手指的刻画,基本上没有出过错

线条非常漂亮,没有弯曲的迹象

图片提示词没写好,出图很模糊,但是可以看出窗户等是规规整整的,没有扭曲变形。

2

如何使用Flux

1、非自部署需要使用ComfyUI

对于非开发者或者开发能力不强的人来说,直接使用ComfyUI是比较好的选择。

**2、使用相应的工作流和权重模型
**

Flux需要对应使用其vae编码器/解码器,clip模型使用t5xxl_fp16.safetensors,具体可见工作流。

3、ComfyUI工作流

默认提供下载的工作流比较繁琐,可以考虑自己重新搭建,主要为大模型加载器、vae加载器、clip加载器(需要单独加载)、Ksampler采样器和最后的预览。

4、硬件要求

Flux对硬件要求很高,官方推荐是12g显存,这个数字一般只有笔记本/台式机4080或者以上显卡能达到(魔改的2080不算),但是实际测试下来,我的3070 8g的显存也能跑起来,但是内存却吃掉了16g,同时CPU也跑满了,出一个1024X1024的图大概需要3~5分钟,512X768的大概1分钟。

5、出漂亮图的重点

提示词非常重要,建议使用长句式。另外采样器和调度器在一定程度上会决定出图的风格与颜色艳丽程度。一般情况下使用Eular a祖先采样器+Karras或者DPM 2M++等效果还不错。

3

模型能力对比

这里列出Flux和其他几个模型的对比能力

模型对比有一定的主观性

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,我需要回答用户关于Flux模型Stable Diffusion在机器学习深度学习中的比较或区别的问题。首先,我需要明确这两个模型各自的背景应用领域。 根据引用[2],Flux模型经过量化后显存需求降低,12G显存即可运行,适合资源有限的环境。而引用[1][3]提到Stable Diffusion主要用于图像生成,支持多种风格化方法,如预训练模型、LoRA等。引用[4]则涉及Stable Diffusion与其他工具的集成,显示其部署复杂性。 接下来,我需要对比两者的核心差异。Flux可能属于轻量化模型,注重效率资源节省,适合边缘计算。而Stable Diffusion作为生成模型,专注于高质量图像生成,需要更多计算资源。此外,应用场景不同,一个是可能用于推理或特定任务,另一个是创意图像生成。 然后,考虑用户可能的深层需求,比如如何根据项目需求选择模型。需要从资源、应用目标、技术特点等方面给出建议,并引用相关引用支持观点。同时,生成相关问题时要覆盖性能优化、应用场景部署考量等方面。</think>### Flux模型Stable Diffusion的对比分析 #### 1. **核心定位与功能差异** - **Flux模型** 根据引用[2],Flux模型的核心优势在于**显存优化**,量化后的版本(如`flux1-dev-fp8`)仅需12GB显存即可运行,适合资源受限的场景(如边缘设备或中小型GPU)。其设计目标更偏向于**高效推理**,可能在模型压缩或特定领域(如低资源环境下的图像处理)有应用[^2]。 - **Stable Diffusion** Stable Diffusion是专注于**图像生成**的扩散模型,支持生成高质量的艺术图像,并可通过预训练大模型(Checkpoint)、LoRA微调模型等方式实现风格化(引用[1])。其资源需求较高,通常需要高性能GPU(如16GB以上显存),且部署复杂度更高(引用[4])[^1][^4]。 #### 2. **技术架构与适用场景** - **Flux模型** - **技术特点**:可能基于轻量化架构(如量化、剪枝),牺牲少量精度以换取显存计算效率。 - **适用场景**:实时推理、移动端部署、资源敏感型任务(如工业检测或嵌入式系统)。 - **Stable Diffusion** - **技术特点**:基于扩散模型Diffusion Model),通过逐步去噪生成图像,依赖大规模预训练微调技术。 - **适用场景**:艺术创作、广告设计、游戏资产生成等需要高创意性多样性的领域(引用[3])[^3]。 #### 3. **性能与资源权衡** - **显存需求**:Flux模型在量化后显存需求大幅降低(12GB),而Stable Diffusion的标准版本可能需要16GB以上显存,且4位量化版本仍需231GB显存(引用[4])[^4]。 - **生成质量**:Stable Diffusion在图像细节多样性上更优,而Flux可能更注重速度与资源效率的平衡(引用[2])[^2]。 #### 4. **选择建议** - **选择Flux模型**:若需快速部署在资源有限的设备,或任务对生成速度敏感但对图像质量要求中等。 - **选择Stable Diffusion**:若追求高创意性图像输出,且有充足计算资源(如云端GPU或工作站)支持[^1][^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值