BAPC2014 C&&HUNNU11583:Citadel Construction(几何)

题意:

给出一系列的点,要求寻找最多4个点,使得组成一个面积最大的多边形


思路:

很显然只有两种情况,要么是三角形,要么是四边形

首先不难想到的是,先要把最外面的点都找出来,其实就是找凸包

但是并没有做过凸包,那么怎么办?

我们知道,ab与ac向量相乘得到ab*ac>=0的情况下,可以知道所有符合这个条件的,都固定在顺时针,那么我们可以通过这个,来求得所有外层的点

得到这些点之后,我们就可以来找出答案了


#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <algorithm>
#include <climits>
using namespace std;

#define ls 2*i
#define rs 2*i+1
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define ULL unsigned long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define rank rank1
const int mod = 1000000007;

struct point
{
    int x,y;
} a[N],s[N];
int t,n;

int ads(int a)
{
    return a<0?-a:a;
}

int mult(point a,point b,point c)
{
    return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}

int cmp(point a,point b)
{
    if(a.y==b.y)
        return a.x<b.x;
    return a.y<b.y;
}

int set1(point a[],int n,point s[])
{
    int i,j,k;
    int top = 1;
    sort(a,a+n,cmp);
    if(n==0) return 0;
    s[0] = a[0];
    if(n==1) return 1;
    s[1] = a[1];
    if(n==2) return 2;
    s[2] = a[2];
    for(i = 2; i<n; i++)//先找右边的外层
    {
        while(top&&mult(a[i],s[top],s[top-1])>=0)//新进来的在顺时针方向,可以取代已保存在栈内的
            top--;
        s[++top] = a[i];
    }
    int len = top;
    s[++top] = a[n-2];
    for(i = n-3; i>=0; i--)//找左边的外层
    {
        while(top!=len&&mult(a[i],s[top],s[top-1])>=0)
            top--;
        s[++top] = a[i];
    }
    return top;
}

void solve()
{
    int i,j,k,cnt,area;
    for(int i=0; i<n; i++)
        scanf("%d%d",&a[i].x,&a[i].y);
    cnt = set1(a,n,s);
    if(cnt<3)
    {
        printf("0\n");
    }
    else if(cnt==3)
    {
        area = mult(s[2],s[1],s[0]);
        area = ads(area);
        if(area%2) printf("%d.5\n",area/2);
        else printf("%d\n",area/2);
    }
    else
    {
        area=-INF;
        s[cnt] = s[0];
        for(i = 0; i<cnt; i++)
        {
            int l = i,r = i+2;
            for(j = i+2; j<cnt; j++)//以i,j为四边形对角线,两边循环保证两个三角形不相交算出最大面积
            {
                while(abs(mult(s[l+1],s[j],s[i]))>abs(mult(s[l],s[j],s[i]))) l = (l+1)%cnt;
                int s1 = abs(mult(s[l],s[j],s[i]));
                while(abs(mult(s[r+1],s[j],s[i]))>abs(mult(s[r],s[j],s[i]))) r = (r+1)%cnt;
                int s2 = abs(mult(s[r],s[j],s[i]));
                area = max(area,s1+s2);
            }
        }
        if(area%2) printf("%d.5\n",area/2);
        else printf("%d\n",area/2);
    }
}

int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        solve();
    }

    return 0;
}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页