链接:戳这里
Arrange
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
问题描述
Cupid一不小心将爱情之箭射到了自己,他爱上了Psyche。
这引起了他的母亲Venus的注意。Venus将Psyche带到了一堆打乱的谷堆旁。
这儿共有 n n堆稻谷,编号为 1到 n。Psyche需要将这些谷堆以某种顺序排列,设最终排在第 ii位的谷堆是 Ai。
她得知了一些该排列的要求:
1. 对于任意整数i∈[1,n], A1 ,A2 ,...,Ai 的最小值为 Bi 。
2. 对于任意整数i∈[1,n], A1 ,A2 ,...,Ai 的最大值为 Ci 。
现在Psyche想知道,共有多少种合法的排列。由于答案可能很大,输出时对 998244353 取模。
输入描述
第一行,一个整数 T (1≤T≤15),代表数据组数。
对于每组数据,第一行有一个整数 n (1≤n≤10e5),代表排列大小。
第二行, n n个整数,第 i i个整数为 Bi (1≤Bi ≤n)。
第三行, n n个整数,第 i i个整数为 Ci (1≤Ci ≤n)。
输出描述
输出 T 行,对于每组数据输出答案对 998244353取模的结果。
输入样例
2
3
2 1 1
2 2 3
5
5 4 3 2 1
1 2 3 4 5
输出样例
1
0
Hint
对于第一组数据,只有一种合法的排列 (2,1,3)。
对于第二组数据,没有合法的排列。
思路:
只有当Bi和Ci都没有变化的时候才计算贡献,那么剩下的是统计区间[Bi,Ci]里还有多少个数能选
用树状数组计算区间和,每加入一个数对应位置上+1。当Bi和Ci都没变得时候,统计完贡献以后也要插入一个数。
这个数可以是Bi(区间[mn,mx]两边一定在慢慢靠近,所以选Bi每次都会统计进去)。
我们只需要计算区间上还有多少个数没有放,不一定要确定到哪些数
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<iomanip>
#include<cmath>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define maxn 0x3f3f3f3f
#define MAX 1000100
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef unsigned long long ull;
#define INF (1ll<<60)-1
#define mod 998244353
using namespace std;
int n;
int B[100100],C[100100];
int num[100100];
int lowbit(int x){
return x&-x;
}
void update(int x){
while(x<=n){
num[x]++;
x+=lowbit(x);
}
}
int getsum(int x){
int ans=0;
while(x>=1){
ans+=num[x];
x-=lowbit(x);
}
return ans;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
mst(num,0);
int flag=0;
for(int i=1;i<=n;i++) {
scanf("%d",&B[i]);
if(i!=1 && B[i]>B[i-1]) flag=1;
}
for(int i=1;i<=n;i++) {
scanf("%d",&C[i]);
if(B[i]>C[i]) flag=1;
if(C[i]<C[i-1]) flag=1;
}
ll ans=1;
int mn=B[1],mx=C[1];
update(mn);
if(mn!=mx) flag=1;
for(int i=2;i<=n;i++){
if(B[i]!=mn && C[i]==mx){
mn=B[i];
update(mn);
} else if(B[i]==mn && C[i]!=mx){
mx=C[i];
update(mx);
} else if(B[i]!=mn && C[i]!=mx){
mn=B[i];
mx=C[i];
flag=1;
break;
} else if(B[i]==mn && C[i]==mx){
int x=mx-mn+1;
int y=getsum(mx)-getsum(mn-1);
if(x>y) update(mn);
ans*=max(0,(x-y));
}
ans%=mod;
}
if(flag) {
cout<<0<<endl;
continue;
}
printf("%I64d\n",ans);
}
return 0;
}
/*
10
5
5 1 1 1 1
5 5 5 5 5
5
2 2 2 2 1
2 5 5 5 5
*/