logistic损失函数推导

\qquad Sklearn中逻辑回归的损失函数的推导:
As an
\qquad 假设y的标签为1和-1,用极大似然估计法估计模型参数, P ( Y = 1 ∣ X i ) P(Y=1|X_i) P(Y=1Xi)= h ( X i T W + C ) h(X_i^TW+C) h(XiTW+C)= 1 1 + e x p ( − ( X i T W + C ) ) \frac{1}{1+exp(-(X_i^TW+C))} 1+exp((XiTW+C))1,则目标为估计最大化下列概率的参数:
Step1:
\qquad ∏ i , y i = 1 \prod_{i,y_i=1} i,yi=1 P ( Y = 1 ∣ X i ) P(Y=1|X_i) P(Y=1Xi) ∏ i , y i = − 1 \prod_{i,y_i=-1} i,yi=1 P ( Y = − 1 ∣ X i ) P(Y=-1|X_i) P(Y=1Xi)
\qquad = ∏ i , y i = 1 \prod_{i,y_i=1} i,yi=1 P ( Y = 1 ∣ X = i ) P(Y=1|X=i) P(Y=1X=i) ∏ i , y i = − 1 \prod_{i,y_i=-1} i,yi=1 ( 1 − P ( Y = 1 ∣ X = i ) ) (1-P(Y=1|X=i)) (1P(Y=1X=i))
\qquad = ∏ i , y i = 1 \prod_{i,y_i=1} i,yi=1 h ( X i T W + C ) h(X_i^TW+C) h(XiTW+C) ∏ i , y i = − 1 \prod_{i,y_i=-1} i,yi=1 h ( − ( X i T W + C ) ) h(-(X_i^TW+C)) h((XiTW+C))
\qquad = ∏ i , y i \prod_{i,y_i} i,yi h ( y i ( X i T W + C ) ) h(y_i(X_i^TW+C)) h(yi(XiTW+C))
\qquad 对数化之后不影响求参过程,则目标变为求使得 Σ i , y i \Sigma_{i,y_i} Σi,yi l o g ( h ( y i ( X i T W + C ) ) ) log(h(y_i(X_i^TW+C))) log(h(yi(XiTW+C)))最大化的参数。为将其转化为损失函数,目标转为最小化- Σ i , y i \Sigma_{i,y_i} Σi,yi l o g ( h ( y i ( X i T W + C ) ) ) log(h(y_i(X_i^TW+C))) log(h(yi(XiTW+C)))的参数,则:
\qquad - Σ i , y i \Sigma_{i,y_i} Σi,yi l o g ( h ( y i ( X i T W + C ) ) ) log(h(y_i(X_i^TW+C))) log(h(yi(XiTW+C)))
\qquad =- Σ i , y i \Sigma_{i,y_i} Σi,yi l o g ( 1 1 + e x p ( − y i ( X i T W + C ) ) ) log(\frac{1}{1+exp(-y_i(X_i^TW+C))}) log(1+exp(yi(XiTW+C))1)
\qquad = Σ i , y i \Sigma_{i,y_i} Σi,yi l o g ( 1 + e x p ( − y i ( X i T W + C ) ) ) log(1+exp(-y_i(X_i^TW+C))) log(1+exp(yi(XiTW+C)))

\qquad 推导完成!撒花撒花撒花。非常感谢sanshun大佬的大力支持,大家有空可以去大佬的博客逛逛呀sanshun博客,会慢慢更新哦

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我来简单介绍一下 logistic 回归的原理推导Logistic 回归是一种分类算法,它的目标是根据输入特征预测样本属于哪个类别。在二分类问题中,我们通常将样本分为正类和负类两种情况。Logistic 回归的核心思想是通过一个 Sigmoid 函数将输入特征映射到 0 到 1 的概率值,然后根据概率值进行分类。 具体来说,我们假设有 $m$ 个样本,每个样本有 $n$ 个特征,我们用 $x^{(i)}$ 表示第 $i$ 个样本的特征向量,用 $y^{(i)}$ 表示第 $i$ 个样本的标签(0 或 1)。我们的目标是学习一个函数 $h_{\theta}(x)$,使得对于任意输入特征 $x$,$h_{\theta}(x)$ 都能够预测出该样本属于正类的概率。 我们可以使用逻辑回归模型来实现这个目标。逻辑回归模型的形式如下: $$h_{\theta}(x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}}$$ 其中,$\theta$ 是模型参数,$g(z)$ 是 Sigmoid 函数,其定义为: $$g(z) = \frac{1}{1+e^{-z}}$$ 我们的目标是最大化似然函数,即: $$L(\theta) = \prod_{i=1}^m h_{\theta}(x^{(i)})^{y^{(i)}}(1-h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$ 为了方便计算,我们通常使用对数似然函数: $$l(\theta) = \log L(\theta) = \sum_{i=1}^m y^{(i)}\log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$ 我们的目标是最大化对数似然函数,即: $$\max_{\theta} l(\theta)$$ 我们可以使用梯度上升算法来求解最优参数 $\theta$。具体来说,我们需要计算对数似然函数的梯度: $$\frac{\partial l(\theta)}{\partial \theta_j} = \sum_{i=1}^m (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}$$ 然后根据梯度上升算法的更新公式更新参数 $\theta$: $$\theta_j := \theta_j + \alpha \frac{\partial l(\theta)}{\partial \theta_j}$$ 其中,$\alpha$ 是学习率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值