目录
一、文献综述
内生性随机边界模型在经济和管理领域的应用日益广泛,为研究效率问题提供了有力的工具。
Kumbhakar 和 Parmeter(2009)将内生性随机边界模型应用于农业生产效率的研究,通过巧妙地处理内生性问题,更准确地评估了各种投入要素对产出的影响,并揭示了不同地区农业生产效率的差异及其背后的原因。
Battese 和 Coelli(1995)在研究企业生产效率时,引入了内生性随机边界模型,发现企业的技术创新和管理策略对效率的提升具有关键作用,为企业的优化决策提供了重要依据。
Wang 和 Ho(2010)利用该模型对制造业的成本效率进行了深入分析,指出产业结构和市场竞争程度对成本效率有着显著的影响,为产业政策的制定提供了有价值的参考。
这些研究充分展示了内生性随机边界模型在揭示经济和管理现象背后的规律方面的强大能力,为后续的研究提供了丰富的理论和方法基础。
二、理论原理
此外,还有一些其他方法来处理内生性,如广义矩估计(GMM)等,具体方法的选择取决于数据特征和研究问题的性质。
总之,内生性随机边界模型通过解决解释变量的内生性问题,能够更准确地刻画生产或成本前沿,评估技术效率,为深入理解经济和管理中的效率问题提供了更有力的分析工具。
三、实证模型
通过构建这样的实证模型,我们可以更准确地估计企业的生产前沿以及各投入要素对产出的影响,从而评估企业的生产效率,并分析技术创新在其中的作用。
四、稳健性检验
为了验证模型的稳健性,可以进行以下操作:
- 改变样本范围,观察估计结果的变化。例如,