PtNeedle
码龄9年
求更新 关注
提问 私信
  • 博客:40,671
    40,671
    总访问量
  • 2
    原创
  • 5
    粉丝
  • 13
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2016-07-15

个人简介:经常怀疑,偶尔批判,极少否定。

博客简介:

PtNeedle的博客

查看详细资料
个人成就
  • 获得15次点赞
  • 内容获得1次评论
  • 获得46次收藏
  • 博客总排名785,802名
创作历程
  • 2篇
    2021年
成就勋章

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

62人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

第二类曲线、曲面积分计算公式

第二类曲线、曲面积分(对坐标的积分)计算公式总结下面将列出常用正交坐标系下的第二类曲线、曲面积分的直接计算公式。以下默认被积函数为对应正交坐标系下形如 f⃗=(P,Q,R)\vec{f}=(P,Q,R)f​=(P,Q,R) 的矢量函数。一、第二类曲线积分第二类曲线积分是在有向曲线的弧长上对矢量函数进行积分。1. xyzxyzxyz 坐标系(直角坐标系)下的第二类曲线积分假定积分区域为Γ:{x=x(s)y=y(s)z=z(s)(s∈(s‾,s‾))\Gamma:\left\{\begin{arr
原创
发布博客 2021.12.15 ·
18492 阅读 ·
8 点赞 ·
2 评论 ·
22 收藏

第一类曲线、曲面积分计算公式

第一类积分计算公式总结下面将列出常用正交坐标系下的第一类曲线、曲面积分的直接计算公式。一、第一类曲线积分第一类曲线积分是在曲线弧长上对标量函数进行积分。1. xyzxyzxyz坐标系(直角坐标系)下的第一类曲线积分假定积分区域为Γ:{x=x(s)y=y(s)z=z(s)(s∈(s‾,s‾))\Gamma:\left\{\begin{array}{l} x=x(s)\\ y=y(s)\\ z=z(s)\end{array}\right.\\(s\in(\underli
原创
发布博客 2021.12.15 ·
22176 阅读 ·
7 点赞 ·
0 评论 ·
25 收藏