第二类曲线、曲面积分(对坐标的积分)计算公式总结
下面将列出常用正交坐标系下的第二类曲线、曲面积分的直接计算公式。以下默认被积函数为对应正交坐标系下形如 f ⃗ = ( P , Q , R ) \vec{f}=(P,Q,R) f=(P,Q,R) 的矢量函数。
一、第二类曲线积分
第二类曲线积分是在有向曲线的弧长上对矢量函数进行积分。
1. x y z xyz xyz 坐标系(直角坐标系)下的第二类曲线积分
假定积分区域为
Γ
:
{
x
=
x
(
s
)
y
=
y
(
s
)
z
=
z
(
s
)
(
s
∈
(
s
‾
,
s
‾
)
)
\Gamma:\left\{\begin{array}{l} x=x(s)\\ y=y(s)\\ z=z(s) \end{array}\right.\\ (s\in(\underline{s},\overline{s}))
Γ:⎩⎨⎧x=x(s)y=y(s)z=z(s)(s∈(s,s))
并规定
(
x
s
′
,
y
s
′
,
z
s
′
)
(x_s',y_s',z_s')
(xs′,ys′,zs′) 的方向为正方向,则有
∫
Γ
f
⃗
(
x
,
y
,
z
)
⋅
d
l
⃗
=
∫
Γ
P
d
x
+
Q
d
y
+
R
d
z
=
∫
s
‾
s
‾
(
P
x
s
′
+
Q
y
s
′
+
R
z
s
′
)
d
s
\int_{\Gamma}\vec{f}(x,y,z)\cdot\vec{\mathrm{d}l}=\int_{\Gamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z\\ =\int_{\underline{s}}^{\overline{s}}(Px_s'+Qy_s'+Rz_s')\mathrm{d}s
∫Γf(x,y,z)⋅dl=∫ΓPdx+Qdy+Rdz=∫ss(Pxs′+Qys′+Rzs′)ds
特殊地,若积分区域可以表示为
Γ
:
{
x
=
x
(
z
)
y
=
y
(
z
)
z
=
z
(
z
∈
(
z
‾
,
z
‾
)
)
\Gamma:\left\{\begin{array}{l} x=x(z)\\ y=y(z)\\ z=z \end{array}\right.\\ (z\in(\underline{z},\overline{z}))
Γ:⎩⎨⎧x=x(z)y=y(z)z=z(z∈(z,z))
并规定
(
x
z
′
,
y
z
′
,
1
)
(x_z',y_z',1)
(xz′,yz′,1) 的方向为正方向,则有
∫
Γ
f
⃗
(
x
,
y
,
z
)
⋅
d
l
⃗
=
∫
Γ
P
d
x
+
Q
d
y
+
R
d
z
=
∫
z
‾
z
‾
(
P
x
z
′
+
Q
y
z
′
+
R
)
d
z
\int_{\Gamma}\vec{f}(x,y,z)\cdot\vec{\mathrm{d}l}=\int_{\Gamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z\\ =\int_{\underline{z}}^{\overline{z}}(Px_z'+Qy_z'+R)\mathrm{d}z
∫Γf(x,y,z)⋅dl=∫ΓPdx+Qdy+Rdz=∫zz(Pxz′+Qyz′+R)dz
2. r θ ϕ r\theta\phi rθϕ 坐标系(球坐标系,默认 θ ∈ [ 0 , π ] \theta\in[0,\pi] θ∈[0,π] )下的第二类曲线积分
假定积分区域为
Γ
:
{
r
=
r
(
s
)
θ
=
θ
(
s
)
ϕ
=
ϕ
(
s
)
(
s
∈
(
s
‾
,
s
‾
)
)
\Gamma:\left\{\begin{array}{l} r=r(s)\\ \theta=\theta(s)\\ \phi=\phi(s) \end{array}\right.\\ (s\in(\underline{s},\overline{s}))
Γ:⎩⎨⎧r=r(s)θ=θ(s)ϕ=ϕ(s)(s∈(s,s))
并规定
(
r
s
′
,
θ
s
′
,
ϕ
s
′
)
(r_s',\theta_s',\phi_s')
(rs′,θs′,ϕs′) 的方向为正方向,则有
∫
Γ
f
⃗
(
r
,
θ
,
ϕ
)
⋅
d
l
⃗
=
∫
Γ
P
d
r
+
Q
r
d
θ
+
R
r
s
i
n
θ
d
ϕ
=
∫
s
‾
s
‾
(
P
r
s
′
+
Q
r
θ
s
′
+
R
r
s
i
n
θ
ϕ
s
′
)
d
s
\int_{\Gamma}\vec{f}(r,\theta,\phi)\cdot\vec{\mathrm{d}l}=\int_{\Gamma}P\mathrm{d}r+Qr\mathrm{d}\theta+Rr\mathrm{sin}\theta\mathrm{d}\phi\\ =\int_{\underline{s}}^{\overline{s}}(Pr_s'+Qr\theta_s'+Rr\mathrm{sin}\theta\phi_s')\mathrm{d}s
∫Γf(r,θ,ϕ)⋅dl=∫ΓPdr+Qrdθ+Rrsinθdϕ=∫ss(Prs′+Qrθs′+Rrsinθϕs′)ds
3. r ϕ z r\phi{}z rϕz 坐标系(柱坐标系)下的第二类曲线积分
假定积分区域为
Γ
:
{
r
=
r
(
s
)
ϕ
=
ϕ
(
s
)
z
=
z
(
s
)
(
s
∈
(
s
‾
,
s
‾
)
)
\Gamma:\left\{\begin{array}{l} r=r(s)\\ \phi=\phi(s)\\ z=z(s) \end{array}\right.\\ (s\in(\underline{s},\overline{s}))
Γ:⎩⎨⎧r=r(s)ϕ=ϕ(s)z=z(s)(s∈(s,s))
并规定
(
r
s
′
,
ϕ
s
′
,
z
s
′
)
(r_s',\phi_s',z_s')
(rs′,ϕs′,zs′) 的方向为正方向,则有
∫
Γ
f
⃗
(
r
,
ϕ
,
z
)
⋅
d
l
⃗
=
∫
Γ
P
d
r
+
Q
r
d
ϕ
+
R
d
z
=
∫
s
‾
s
‾
(
P
r
s
′
+
Q
r
ϕ
s
′
+
R
z
s
′
)
d
s
\int_{\Gamma}\vec{f}(r,\phi,z)\cdot\vec{\mathrm{d}l}=\int_{\Gamma}P\mathrm{d}r+Qr\mathrm{d}\phi+R\mathrm{d}z\\ =\int_{\underline{s}}^{\overline{s}}(Pr_s'+Qr\phi_s'+Rz_s')\mathrm{d}s
∫Γf(r,ϕ,z)⋅dl=∫ΓPdr+Qrdϕ+Rdz=∫ss(Prs′+Qrϕs′+Rzs′)ds
二、第二类曲面积分
第二类曲面积分是在有向曲面的面积上对矢量函数进行积分。
1. x y z xyz xyz 坐标系(直角坐标系)下的第二类曲面积分
假定积分区域为
Σ
:
{
x
=
x
(
s
,
t
)
y
=
y
(
s
,
t
)
z
=
z
(
s
,
t
)
(
(
s
,
t
)
∈
Σ
′
)
\Sigma:\left\{\begin{array}{l} x=x(s,t)\\ y=y(s,t)\\ z=z(s,t) \end{array}\right.\\ ((s,t)\in\Sigma')
Σ:⎩⎨⎧x=x(s,t)y=y(s,t)z=z(s,t)((s,t)∈Σ′)
并规定
(
x
s
′
,
y
s
′
,
z
s
′
)
×
(
x
t
′
,
y
t
′
,
z
t
′
)
(x_s',y_s',z_s')\times(x_t',y_t',z_t')
(xs′,ys′,zs′)×(xt′,yt′,zt′) 的方向为正方向,则有
∬
Σ
f
⃗
(
x
,
y
,
z
)
⋅
d
σ
⃗
=
∬
Σ
P
d
y
∧
d
z
+
Q
d
z
∧
d
x
+
R
d
x
∧
d
y
=
∬
Σ
′
(
P
,
Q
,
R
)
⋅
[
(
x
s
′
,
y
s
′
,
z
s
′
)
×
(
x
t
′
,
y
t
′
,
z
t
′
)
]
d
s
d
t
=
∬
Σ
′
[
P
(
y
s
′
z
t
′
−
z
s
′
y
t
′
)
+
Q
(
z
s
′
x
t
′
−
x
s
′
z
t
′
)
+
R
(
x
s
′
y
t
′
−
y
s
′
x
t
′
)
]
d
s
d
t
\iint_{\Sigma}\vec{f}(x,y,z)\cdot\vec{\mathrm{d}\sigma}=\iint_{\Sigma}P\mathrm{d}y\wedge\mathrm{d}z+Q\mathrm{d}z\wedge\mathrm{d}x+R\mathrm{d}x\wedge\mathrm{d}y\\ =\iint_{\Sigma'}(P,Q,R)\cdot[(x_s',y_s',z_s')\times(x_t',y_t',z_t')]\mathrm{d}s\mathrm{d}t\\ =\iint_{\Sigma'}[P(y_s'z_t'-z_s'y_t')+Q(z_s'x_t'-x_s'z_t')+R(x_s'y_t'-y_s'x_t')]\mathrm{d}s\mathrm{d}t
∬Σf(x,y,z)⋅dσ=∬ΣPdy∧dz+Qdz∧dx+Rdx∧dy=∬Σ′(P,Q,R)⋅[(xs′,ys′,zs′)×(xt′,yt′,zt′)]dsdt=∬Σ′[P(ys′zt′−zs′yt′)+Q(zs′xt′−xs′zt′)+R(xs′yt′−ys′xt′)]dsdt
特殊地,若积分区域可以表示为
Σ
:
{
x
=
x
y
=
y
z
=
z
(
x
,
y
)
(
(
x
,
y
)
∈
Σ
′
)
\Sigma:\left\{\begin{array}{l} x=x\\ y=y\\ z=z(x,y) \end{array}\right.\\ ((x,y)\in\Sigma')
Σ:⎩⎨⎧x=xy=yz=z(x,y)((x,y)∈Σ′)
并规定
(
1
,
0
,
z
x
′
)
×
(
0
,
1
,
z
y
′
)
=
(
−
z
x
′
,
−
z
y
′
,
1
)
(1,0,z_x')\times(0,1,z_y')=(-z_x',-z_y',1)
(1,0,zx′)×(0,1,zy′)=(−zx′,−zy′,1) 的方向为正方向,则有
∬
Σ
f
⃗
(
x
,
y
,
z
)
⋅
d
σ
⃗
=
∬
Σ
P
d
y
∧
d
z
+
Q
d
z
∧
d
x
+
R
d
x
∧
d
y
=
∬
Σ
′
(
P
,
Q
,
R
)
⋅
(
−
z
x
′
,
−
z
y
′
,
1
)
d
x
d
y
=
∬
Σ
′
(
−
P
z
x
′
−
Q
z
y
′
+
R
)
d
x
d
y
\iint_{\Sigma}\vec{f}(x,y,z)\cdot\vec{\mathrm{d}\sigma}=\iint_{\Sigma}P\mathrm{d}y\wedge\mathrm{d}z+Q\mathrm{d}z\wedge\mathrm{d}x+R\mathrm{d}x\wedge\mathrm{d}y\\ =\iint_{\Sigma'}(P,Q,R)\cdot(-z_x',-z_y',1)\mathrm{d}x\mathrm{d}y=\iint_{\Sigma'}(-Pz_x'-Qz_y'+R)\mathrm{d}x\mathrm{d}y
∬Σf(x,y,z)⋅dσ=∬ΣPdy∧dz+Qdz∧dx+Rdx∧dy=∬Σ′(P,Q,R)⋅(−zx′,−zy′,1)dxdy=∬Σ′(−Pzx′−Qzy′+R)dxdy
2. r θ ϕ r\theta\phi rθϕ 坐标系(球坐标系,默认 θ ∈ [ 0 , π ] \theta\in[0,\pi] θ∈[0,π] )下的第二类曲面积分
假定积分区域为
Σ
:
{
r
=
r
(
s
,
t
)
θ
=
θ
(
s
,
t
)
ϕ
=
ϕ
(
s
,
t
)
(
(
s
,
t
)
∈
Σ
′
)
\Sigma:\left\{\begin{array}{l} r=r(s,t)\\ \theta=\theta(s,t)\\ \phi=\phi(s,t) \end{array}\right.\\ ((s,t)\in\Sigma')
Σ:⎩⎨⎧r=r(s,t)θ=θ(s,t)ϕ=ϕ(s,t)((s,t)∈Σ′)
并规定
(
r
s
′
,
θ
s
′
,
ϕ
s
′
)
×
(
r
t
′
,
θ
t
′
,
ϕ
t
′
)
(r_s',\theta_s',\phi_s')\times(r_t',\theta_t',\phi_t')
(rs′,θs′,ϕs′)×(rt′,θt′,ϕt′) 的方向为正方向,则有
∬
Σ
f
⃗
(
r
,
θ
,
ϕ
)
⋅
d
σ
⃗
=
∬
Σ
P
(
r
d
θ
)
∧
(
r
s
i
n
θ
d
ϕ
)
+
Q
(
r
s
i
n
θ
d
ϕ
)
∧
d
r
+
R
d
r
∧
(
r
d
θ
)
=
∬
Σ
′
(
P
,
Q
,
R
)
⋅
[
(
r
s
′
,
r
θ
s
′
,
r
s
i
n
θ
ϕ
s
′
)
×
(
r
t
′
,
r
θ
t
′
,
r
s
i
n
θ
ϕ
t
′
)
]
d
s
d
t
=
∬
Σ
′
[
P
r
2
s
i
n
θ
(
θ
s
′
ϕ
t
′
−
ϕ
s
′
θ
t
′
)
+
Q
r
s
i
n
θ
(
ϕ
s
′
r
t
′
−
r
s
′
ϕ
t
′
)
+
R
r
(
r
s
′
θ
t
′
−
θ
s
′
r
t
′
)
]
d
s
d
t
\iint_{\Sigma}\vec{f}(r,\theta,\phi)\cdot\vec{\mathrm{d}\sigma}=\iint_{\Sigma}P(r\mathrm{d}\theta)\wedge(r\mathrm{sin}\theta\mathrm{d}\phi)+Q(r\mathrm{sin}\theta\mathrm{d}\phi)\wedge\mathrm{d}r+R\mathrm{d}r\wedge(r\mathrm{d}\theta)\\ =\iint_{\Sigma'}(P,Q,R)\cdot[(r_s',r\theta_s',r\mathrm{sin}\theta\phi_s')\times(r_t',r\theta_t',r\mathrm{sin}\theta\phi_t')]\mathrm{d}s\mathrm{d}t\\ =\iint_{\Sigma'}[Pr^2\mathrm{sin}\theta(\theta_s'\phi_t'-\phi_s'\theta_t')+Qr\mathrm{sin}\theta(\phi_s'r_t'-r_s'\phi_t')+Rr(r_s'\theta_t'-\theta_s'r_t')]\mathrm{d}s\mathrm{d}t
∬Σf(r,θ,ϕ)⋅dσ=∬ΣP(rdθ)∧(rsinθdϕ)+Q(rsinθdϕ)∧dr+Rdr∧(rdθ)=∬Σ′(P,Q,R)⋅[(rs′,rθs′,rsinθϕs′)×(rt′,rθt′,rsinθϕt′)]dsdt=∬Σ′[Pr2sinθ(θs′ϕt′−ϕs′θt′)+Qrsinθ(ϕs′rt′−rs′ϕt′)+Rr(rs′θt′−θs′rt′)]dsdt
3. r ϕ z r\phi{}z rϕz 坐标系(柱坐标系)下的第二类曲面积分
假定积分区域为
Σ
:
{
r
=
r
(
s
,
t
)
ϕ
=
ϕ
(
s
,
t
)
z
=
z
(
s
,
t
)
(
(
s
,
t
)
∈
Σ
′
)
\Sigma:\left\{\begin{array}{l} r=r(s,t)\\ \phi=\phi(s,t)\\ z=z(s,t)\\ \end{array}\right.\\ ((s,t)\in\Sigma')
Σ:⎩⎨⎧r=r(s,t)ϕ=ϕ(s,t)z=z(s,t)((s,t)∈Σ′)
并规定
(
r
s
′
,
ϕ
s
′
,
z
s
′
)
×
(
r
t
′
,
ϕ
t
′
,
z
t
′
)
(r_s',\phi_s',z_s')\times(r_t',\phi_t',z_t')
(rs′,ϕs′,zs′)×(rt′,ϕt′,zt′) 的方向为正方向,则有
∬
Σ
f
⃗
(
r
,
ϕ
,
z
)
⋅
d
σ
⃗
=
∬
Σ
P
(
r
d
ϕ
)
∧
d
z
+
Q
d
z
∧
d
r
+
R
d
r
∧
(
r
d
ϕ
)
=
∬
Σ
′
(
P
,
Q
,
R
)
⋅
[
(
r
s
′
,
r
ϕ
s
′
,
z
s
′
)
×
(
r
t
′
,
r
ϕ
t
′
,
z
t
′
)
]
d
s
d
t
=
∬
Σ
′
[
P
r
(
ϕ
s
′
z
t
′
−
z
s
′
ϕ
t
′
)
+
Q
(
z
s
′
r
t
′
−
r
s
′
z
t
′
)
+
R
r
(
r
s
′
ϕ
t
′
−
ϕ
s
′
r
t
′
)
]
d
s
d
t
\iint_{\Sigma}\vec{f}(r,\phi,z)\cdot\vec{\mathrm{d}\sigma}=\iint_{\Sigma}P(r\mathrm{d}\phi)\wedge\mathrm{d}z+Q\mathrm{d}z\wedge\mathrm{d}r+R\mathrm{d}r\wedge(r\mathrm{d}\phi)\\ =\iint_{\Sigma'}(P,Q,R)\cdot[(r_s',r\phi_s',z_s')\times(r_t',r\phi_t',z_t')]\mathrm{d}s\mathrm{d}t\\ =\iint_{\Sigma'}[Pr(\phi_s'z_t'-z_s'\phi_t')+Q(z_s'r_t'-r_s'z_t')+Rr(r_s'\phi_t'-\phi_s'r_t')]\mathrm{d}s\mathrm{d}t
∬Σf(r,ϕ,z)⋅dσ=∬ΣP(rdϕ)∧dz+Qdz∧dr+Rdr∧(rdϕ)=∬Σ′(P,Q,R)⋅[(rs′,rϕs′,zs′)×(rt′,rϕt′,zt′)]dsdt=∬Σ′[Pr(ϕs′zt′−zs′ϕt′)+Q(zs′rt′−rs′zt′)+Rr(rs′ϕt′−ϕs′rt′)]dsdt
本文详细总结了第二类曲线积分和曲面积分的计算公式,涵盖xyz坐标系、rθϕ坐标系(球坐标系)和rϕz坐标系(柱坐标系)下的积分表达式,适用于不同坐标系下的矢量函数积分问题。
7879

被折叠的 条评论
为什么被折叠?



