第一类曲线、曲面积分计算公式

本文详细总结了第一类曲线积分和曲面积分的计算公式,包括xyz直角坐标系、rθϕ球坐标系和rϕz柱坐标系下的公式,适用于不同类型的积分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一类曲线、曲面积分(对测度的积分)计算公式总结

下面将列出常用正交坐标系下的第一类曲线、曲面积分的直接计算公式。以下默认被积函数为 f f f

一、第一类曲线积分

第一类曲线积分是在曲线弧长上对标量函数进行积分。

1. x y z xyz xyz 坐标系(直角坐标系)下的第一类曲线积分

假定积分区域为
Γ : { x = x ( s ) y = y ( s ) z = z ( s ) ( s ∈ ( s ‾ , s ‾ ) ) \Gamma:\left\{\begin{array}{l} x=x(s)\\ y=y(s)\\ z=z(s) \end{array}\right.\\ (s\in(\underline{s},\overline{s})) Γ: x=x(s)y=y(s)z=z(s)(s(s,s))
则有
∫ Γ f ( x , y , z ) d l = ∫ s ‾ s ‾ f ( x , y , z ) x s ′ 2 + y s ′ 2 + z s ′ 2 d s \int_{\Gamma}f(x,y,z)\mathrm{d}l\\ =\int_{\underline{s}}^{\overline{s}}f(x,y,z)\sqrt{x_s'^2+y_s'^2+z_s'^2}\mathrm{d}s Γf(x,y,z)dl=ssf(x,y,z)xs′2+ys′2+zs′2 ds
特殊地,若积分区域可以表示为
Γ : { x = x ( z ) y = y ( z ) z = z ( z ∈ ( z ‾ , z ‾ ) ) \Gamma:\left\{\begin{array}{l} x=x(z)\\ y=y(z)\\ z=z \end{array}\right.\\ (z\in(\underline{z},\overline{z})) Γ: x=x(z)y=y(z)z=z(z(z,z))
则有
∫ Γ f ( x , y , z ) d l = ∫ z ‾ z ‾ f ( x , y , z ) x z ′ 2 + y z ′ 2 + 1 d z \int_{\Gamma}f(x,y,z)\mathrm{d}l\\ =\int_{\underline{z}}^{\overline{z}}f(x,y,z)\sqrt{x_z'^2+y_z'^2+1}\mathrm{d}z Γf(x,y,z)dl=zzf(x,y,z)xz′2+yz′2+1 dz

2. r θ ϕ r\theta\phi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值