联邦学习(Federated Learning)

本文介绍了联邦学习作为解决数据隐私和安全问题的可行方案,详细阐述了联邦学习的背景、定义、分类和系统架构。联邦学习允许各方在不共享数据的情况下,通过加密的参数交换建立共享模型,保障数据隐私的同时实现模型共建和效果共享。联邦学习分为横向、纵向和迁移学习,适用于数据孤岛问题,有望打破数据壁垒,推动人工智能发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文出自微众银行AI项目组对于联邦学习介绍的白皮书,网址:https://www.fedai.org/

一、联邦学习背景和重要性

1.人工智能发展概况

数据源之间存在着难以打破的壁垒,一般情况下人工智能的所需要的数据会涉及多个领域,例如在基于人工智能的产品推荐服务中,产品销售方拥有产品的数据、用户购买商 品的数据,但是没有用户购买能力和支付习惯的数据。在大多数行业中,数据是以孤岛的形式存在的,由于行业竞争、隐私安全、行政手续复杂等问题,即使是在同一个公司的不同部门之间实现数据整合也面临着重重阻力,在现实中想要将分散在各地、各个机构的数据进行整合几乎是不可能的,或者说所需的成本是巨大的。

2.GDPR与人工智能挑战

随着大数据的进一步发展,重视数据隐私和安全已经成为了世界性的趋势。 每一次公众数据的泄露都会引起媒体和公众的极大关注,例如最近 Facebook 的数据泄露事件就引起了大范围的抗议行动。同时各国都在加强对数据安全和隐私的保护,欧盟最近引入的新法案《通用数据保护条例》(General Data Protection Regulation, GDPR表明,对用户数据隐私和安全管理的日趋严格将是世界趋势。这给人工智能领域带来了前所未有的 挑战,研究界和企业界目前的情况是收集数据的一方通常不是使用数据的一方,如 A 方收集数据,转移到B方清洗,再转移到C方建模,最后将模型卖给D方使用。这种数据在实体间转移,交换和交易的形式违反了GDPR,并可能遭到法案严厉的惩罚。在这个问题上,人工智能的学界和企业界,目前暂无较好的解决方案来应对这些挑战。

3.联邦学习成为可行的解决方案

如何在满足数据隐私、安全和监管要求的前提下,设计一个机器学习框架,让人工智能 系统能够更加高效、准确的共同使用各自的数据,是当前人工智能发展的一个重要课题。我们倡议把研究的重点转移到如何解决数据孤岛的问题。我们提出一个满足隐私保护和数据安全的一个可行的解决方案,叫做联邦学习。
联邦学习的特点是:

  • 各方数据都保留在本地,不泄露隐私也不违反法规;
  • 各个参与者联合数据建立虚拟的共有模型,并且共同获益的体系;
  • 在联邦学习的体系下,各个参与者的身份和地位相同;
  • 联邦学习的建模效果和将整个数据集放在一处建模的效果相同,或相差不大;
  • 迁移学习是在用户或特征不对齐的情况下,也可以在数据间通过交换加密参数达到知识迁移的效果。
### 联邦学习概念 联邦学习是一种分布式的机器学习范式,在该模式下多个参与者共同训练一个模型而无需分享各自的数据集。这种方式不仅保护了用户的隐私,还能够利用来自不同设备上的数据进行更有效的全局模型更新[^1]。 在同步联邦学习过程中,所有客户端先下载当前版本的全球参数;接着基于本地数据计算梯度并上传给服务器端完成聚合操作形成新一轮迭代所需的最新权重向量[^2]。 对于依赖公共数据集实现的情况,尽管存在这样的设定,但实际应用中的价值依然显著。这是因为即使有公开可用的信息源,各参与方仍可能持有独特且私密的数据样本用于改进特定场景下的预测效果。此外,通过引入多样化的输入有助于增强整体系统的鲁棒性和泛化能力[^3]。 面对非独立同分布(non-IID) 数据带来的挑战——即当各个节点间的数据分布差异较大时可能导致性能下降的问题上,研究者们提出了多种策略加以应对。例如采用迁移学习的思想调整算法结构或是优化通信机制以减轻这种负面影响[^4]。 ### 实现方法概述 以下是Python代码片段展示了一个简单的模拟环境用来理解如何构建基本框架: ```python import numpy as np from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense def create_model(): model = Sequential([ Dense(64, activation='relu', input_shape=(n_features,)), Dense(n_classes, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model # 假设这是从不同客户那里收集到的数据... Xs, ys = [], [] for _ in range(num_clients): X, y = make_classification( n_samples=total_samples_per_client, n_features=n_features, n_informative=n_informative, n_redundant=n_redundant, random_state=_*seed_offset) # 将标签转换成one-hot编码形式 Y = (np.arange(np.max(y)+1) == y[:, None]).astype(int) X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=.20) Xs.append((X_train, X_val)) ys.append((Y_train, Y_val)) global_weights = ... # 初始化为随机值或其他预定义方式 while not stopping_criterion_met: client_updates = [] for i in range(len(Xs)): local_model = create_model() local_model.set_weights(global_weights.copy()) history = local_model.fit(*Xs[i], *ys[i][0], epochs=num_epochs, batch_size=batch_sz, verbose=False) updated_params = local_model.get_weights() client_updates.append(updated_params) global_weights = aggregate(client_updates) # 定义合适的聚合函数 final_global_model = create_model().set_weights(global_weights) ``` 此段伪代码展示了创建模型、准备多组模拟数据以及执行一轮完整的联邦平均过程的主要步骤。请注意这只是一个简化版的例子,并未涉及诸如安全传输协议之类的细节问题。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值