联邦学习 Federated Learning 基本介绍

Federated Learning

联邦学习(FL)是一种在边缘设备利用本地数据进行模型训练,再将模型参数传回服务器聚合的一种训练方法,降低了传统集中式机器学习方法带来的一些系统隐私风险和成本。


联邦学习 vs. 分布式机器学习

  1. 数据和模型的分布:
    • 分布式机器学习:在分布式机器学习中,数据被分割成多个部分,并分布在不同的计算节点上。每个节点独立地训练一个模型,然后通过一定的方式将这些模型进行合并,以生成最终的全局模型。

    • 联邦学习:在联邦学习中,数据保留在各个本地设备或客户端上,不进行集中式的数据汇总。每个客户端在本地训练模型,然后将模型参数的更新发送给中央服务器。中央服务器根据接收到的参数更新来聚合全局模型。

  2. 数据隐私保护:
    • 分布式机器学习:在分布式机器学习中,数据可能在节点之间进行传输,因此需要采取一定的安全措施来保护数据隐私。这可能涉及数据加密、安全传输协议等技术手段。

    • 联邦学习:联邦学习致力于保护个体客户端的数据隐私。在联邦学习中,客户端的数据不离开本地设备,只有模型参数的更新被发送到中央服务器。通过在本地设备上进行模型训练,可以减少对个人数据的曝露。

  3. 计算方式:
    • 分布式机器学习:在分布式机器学习中,通常存在一个中央服务器或调度节点,负责协调和管理各个计算节点之间的通信和计算任务分配。

    • 联邦学习:联邦学习通常采用去中心化的计算方式,中央服务器仅用于聚合模型参数。各个客户端在本地进行计算和模型训练,减少了对中央服务器的依赖。


联邦学习示意图

在这里插入图片描述
假设有N个用户{u1,…un}拥有自己的数据库{Di,…Dn},每个用户无法直接访问其他人的数据以扩充自己的数据。

步骤1:服务器将初始模型发送给每个设备。

步骤2:设备ui不需要共享自己的源数据,但可以使用本地数据Dy进行联邦训练,得到自己的模型W。

步骤3:服务器聚合收集到的本地模型{Wi,…Wn}到全局模型W’,然后更新全局模型,替换每个用户的本地模型。


联邦学习的分类

根据数据样本空间和特征空间的分布模式不同,联邦学习可以分为水平联邦学习、垂直联邦学习和联邦迁移学习三类。
在这里插入图片描述

水平联邦学习

水平联邦学习适用于两个数据集的用户特征重叠较多,而用户重叠较少的情况。

水平联邦学习是将数据集水平分割(按用户维度),然后取出用户特征相同但用户不完全相同的那部分数据进行训练。换句话说,不同行的数据具有相同的数据特征(按用户特征对齐)。因此,水平联邦学习可以增加用户样本量。

例如,在不同地区有两个相同服务的提供者,其用户组来自各自的地区,彼此之间几乎没有重叠。但是,它们的业务非常相似,因此记录的用户特征是相同的。在这方面,我们可以使用水平联邦学习来训练模型,这样不仅可以增加训练样本的总数,而且可以提高模型的准确率。

垂直联邦学习

当两个数据集的用户特征重叠很少,但用户重叠很多时,可以使用垂直联邦学习。

垂直联邦学习是将数据集垂直划分(按用户特征维度划分),然后将用户相同但用户特征不完全相同的部分数据取出进行训练。换句话说,不同列中的数据具有相同的用户(按用户对齐)。因此,垂直联邦学习可以提高训练数据的特征维数。

例如,有两个不同的机构,一个是在一个地方的银行,另一个是在同一个地方的电子商务公司。他们的用户群体很可能包括该地区的大多数居民,所以有一个更大的用户交集。然而,由于银行记录用户的收支行为和信用等级,而电子商务记录用户的浏览和购买历史,它们的用户特征几乎没有交集。垂直联合学习是将这些不同的特征聚合在加密状态下,以增强模型的能力。

联邦迁移学习

在两个数据集的用户和用户特征很少重叠的情况下,我们不分割数据,但可以使用迁移学习来克服数据或标签的缺乏。这种方法被称为联邦迁移学习。

例如,有两个不同的机构,一个是中国的电子商务,另一个是美国的社交应用。由于地域限制,两个机构的用户群体很少重叠。同时,由于机构类型不同,两个数据集的数据特征只有一小部分重叠。在这种情况下,为了进行有效的联邦学习,必须引入迁移学习来解决单侧数据量小、标签样本小的问题,从而提高模型的有效性。


保证隐私

联邦学习实际上是一种加密的分布式机器学习技术,参与者可以在不泄露底层数据的情况下建立模型,使每个企业的自有数据不离开本地。通过加密机制下的参数交换,建立虚拟公共模型。在这一机制下,各方可以成功打通数据孤岛,走向共同发展。

一种常用的方法是使用加密算法,如同态加密和安全聚合。另一种流行的方法是在模型参数中加入差分隐私噪声。Google提出的联邦学习采用安全收敛与差分隐私相结合的方式来保证隐私。也有研究仅使用同态加密保护参数来实现隐私保护。

同态加密 Homomorphic encryption

同态加密允许在加密状态下对数据进行计算而无需解密。简单来说,同态加密允许对加密数据进行操作,得到的结果仍然是加密的,然后可以在解密之前进行计算。这种特性使得数据所有者能够将加密数据发送给其他方进行计算,而无需暴露数据的明文内容。同态加密在保护数据隐私的同时,实现了安全的计算和数据共享。

差分隐私 Differential Privacy

差分隐私是Dwork在2006年为解决统计数据库中的隐私披露问题而提出的一种新的隐私定义。在此定义下,数据库的计算结果对特定记录的变化不敏感,数据集中是否存在单个记录对计算结果的影响很小。因此,在数据集中增加一条记录导致的隐私泄露风险被控制在非常小且可接受的范围内,攻击者无法通过观察计算结果获得准确的个人信息。

在传统机器学习和深度学习的训练过程中,流行在输出中加入噪声,在梯度迭代过程中应用差分隐私,以达到保护用户隐私的目的。在实践中,通常采用拉普拉斯机制和指数机制来实现差分隐私保护。

围绕隐私保护和有效性两个方面进行了大量的研究工作。添加过多的噪声将不可避免地影响有效性。实现隐私性与有效性的平衡是目前最热门的研究方向。例如,差分隐私可以与模型压缩技术相结合,在提高性能的同时最大化隐私效益。


求解异质性

在联邦学习的应用场景中,设备的差异会影响整个训练过程的低效率。为了解决系统异构问题,有四种导流方式:异步通信设备采样容错机制模型异构

异步通信

在传统的数据中心设置中,基于并行迭代优化算法的方案有两种:同步通信和异步通信。然而,面对设备的多样性,同步方案容易受到干扰,因此在联邦学习多设备环境下,异步通信方案可以较好地解决设备分散的问题。利用数据的稀疏性对并行和异步算法进行研究,可以较好地解决训练设备的异构问题。在内存共享系统中,异步方案很好地解决了设备异构的问题。尽管异步更新在分布式系统中取得了很好的效益,但设备通信的延迟问题加剧了设备异构的缺点。在联邦学习过程中,由于实时通信的需要,根据异步通信方案解决系统的异构性是首选。

设备采样

在联邦学习中,并非每个设备都需要参与每个迭代训练过程。在一些联邦学习场景中,设备被选择参与训练,而在另一部分场景中,设备主动参与训练。

容错机制

在不稳定的网络环境下,容错机制可以防止系统崩溃,特别是在分布式环境下。当多台设备协同工作时,一旦其中一台设备出现故障,将会影响到其他设备。联邦学习是目前的一个热点研究方向,借助多设备来保护多个用户的隐私。类似地,我们还需要考虑设备在联邦学习环境中的可接受性。

模型异构

数据是训练模型的基石。当从多方设备中收集分布不均匀的数据来训练联邦模型时,会严重影响模型的最终效率。合理处理来自不同设备的数据对联邦学习具有重要影响。为了解决统计数据异构的问题,联邦学习网络主要分为三种建模方法:

  1. 单个设备有自己的模型;
  2. 训练一个适用于所有设备的全局模型;
  3. 针对任务训练相关的学习模型。

Reference

[1] Li L, Fan Y, Tse M, et al. A review of applications in federated learning[J]. Computers & Industrial Engineering, 2020, 149: 106854.# Federated Learning

  • 23
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值