联邦学习 Federated Learning 基本介绍

本文介绍了联邦学习,一种在本地设备上进行模型训练并保护数据隐私的技术。对比了与分布式机器学习的区别,探讨了数据分布、隐私保护方法(如同态加密和差分隐私)以及如何解决系统异构性,如异步通信、设备采样和容错机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Federated Learning

联邦学习(FL)是一种在边缘设备利用本地数据进行模型训练,再将模型参数传回服务器聚合的一种训练方法,降低了传统集中式机器学习方法带来的一些系统隐私风险和成本。


联邦学习 vs. 分布式机器学习

  1. 数据和模型的分布:
    • 分布式机器学习:在分布式机器学习中,数据被分割成多个部分,并分布在不同的计算节点上。每个节点独立地训练一个模型,然后通过一定的方式将这些模型进行合并,以生成最终的全局模型。

    • 联邦学习:在联邦学习中,数据保留在各个本地设备或客户端上,不进行集中式的数据汇总。每个客户端在本地训练模型,然后将模型参数的更新发送给中央服务器。中央服务器根据接收到的参数更新来聚合全局模型。

  2. 数据隐私保护:
    • 分布式机器学习:在分布式机器学习中,数据可能在节点之间进行传输,因此需要采取一定的安全措施来保护数据隐私。这可能涉及数据加密、安全传输协议等技术手段。

    • 联邦学习:联邦学习致力于保护个体客户端的数据隐私。在联邦学习中,客户端的数据不离开本地设备,只有模型参数的更新被发送到中央服务器。通过在本地设备上进行模型训练,可以减少对个人数据的曝露。

  3. 计算方式:
    • 分布式机器学习:在分布式机器学习中,通常存在一个中央服务器或调度节点,负责协调和管理各个计算节点之间的通信和计算任务分配。

    • 联邦学习:联邦学习通常采用去中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值