Federated Learning
联邦学习(FL)是一种在边缘设备利用本地数据进行模型训练,再将模型参数传回服务器聚合的一种训练方法,降低了传统集中式机器学习方法带来的一些系统隐私风险和成本。
联邦学习 vs. 分布式机器学习
- 数据和模型的分布:
-
分布式机器学习:在分布式机器学习中,数据被分割成多个部分,并分布在不同的计算节点上。每个节点独立地训练一个模型,然后通过一定的方式将这些模型进行合并,以生成最终的全局模型。
-
联邦学习:在联邦学习中,数据保留在各个本地设备或客户端上,不进行集中式的数据汇总。每个客户端在本地训练模型,然后将模型参数的更新发送给中央服务器。中央服务器根据接收到的参数更新来聚合全局模型。
-
- 数据隐私保护:
-
分布式机器学习:在分布式机器学习中,数据可能在节点之间进行传输,因此需要采取一定的安全措施来保护数据隐私。这可能涉及数据加密、安全传输协议等技术手段。
-
联邦学习:联邦学习致力于保护个体客户端的数据隐私。在联邦学习中,客户端的数据不离开本地设备,只有模型参数的更新被发送到中央服务器。通过在本地设备上进行模型训练,可以减少对个人数据的曝露。
-
- 计算方式:
-
分布式机器学习:在分布式机器学习中,通常存在一个中央服务器或调度节点,负责协调和管理各个计算节点之间的通信和计算任务分配。
-
联邦学习:联邦学习通常采用去中
-